Modeling of Rheological Properties of Pectins by Side Branches

펙틴의 곁사슬에 의한 유변학적 성질에 대한 모델

  • Shin, Hae-Hun (Department of Food Marketing, Cheonan College of Foreign Studies) ;
  • Hwang, Jae-Kwan (Bioproducts Research Center, Yonsei University)
  • 신해헌 (천안외국어대학 식품유통과) ;
  • 황재관 (연세대학교 생물산업소재연구센터)
  • Published : 2002.08.01

Abstract

The rheological properties of apple pectins and tomato pectins with different degrees of side branches (sample I and sample II) were investigated with wide range of shear rate by theological modeling. Among the Power law model, Cross model and Carreau model, the Carreau model was the best fitted to the experimental data. Increasing in branching of apple pectins resulted in higher zero-shear viscosity $({\eta}_0)$. But, tomato pectins that have a low degree of side branches were shown litte difference between sample I and sample II. It is concluded that side branches of pectins can result in significant difference in rheological properties. And, this is predicted by the Carreau model.

펙틴에서 곁사슬의 정도가 다르게 제조된 사과펙틴과 토마토펙틴을 이용하여, 낮은 층밀림속도에서부터 높은 층밀림속도까지 적용이 가능한 유변학적 모델을 구하고자 하였다. 지수법칙모델, Cross 모델, Carreau 모델을 실험값에 비교하여 본 결과, Carreau 모델이 가장 적합하였다. 모델식에서 얻어진 층밀림속도 0에서의 점도$({\eta}_0)$는 곁사슬의 정도가 큰 사과펙틴의 경우에는 곁사슬이 많은 sample II가 적은 sample I보다 크게 나은 반면에 곁사슬이 적은 토마토 펙틴은 큰 차이를 보이지 않았으며, 그 값은 사과펙틴보다 크게 나타났다. 모델식의 계수를 펙틴농도에 대한 지수함수로 표현하여 펙틴에서 곁사슬의 영향을 살펴보았다. 즉, 곁사슬이 많은 사과펙틴은 토마토펙틴에 비해 유변학적 성질이 큰 차이를 보이고 있으며 모델로 설명할 수 있다.

Keywords

References

  1. Kim, D.H. Food Chemistry, Tamgudang, Korea (1993)
  2. DeVries, J.A., Den Vijl, C.H., Voragen, A.G.J., Rombouts, F.M. and Pilnik, W. Structural features of the neutral sugar side chains of apple pectic substances. Carbohydr. Polym. 3: 193-205 (1983) https://doi.org/10.1016/0144-8617(83)90018-8
  3. Graessley, W.W. Viscoelasticity and flow in polymer melts and concentrated solutions, pp. 141-150. In: Physical Properties of Polymers, Mark, J.E., Eisenberg, A., Graessley, W.W., Mandelk-ern, L. and Koenig, J.L. (ed.), American Chemical Society, Wash-ington, D.C., USA (1984)
  4. Rokudai, M. Influence of shearing history on the rheological properties and processibility of branched polymers. J. Appl. Polym. Sci. 23: 463-471 (1979) https://doi.org/10.1002/app.1979.070230216
  5. Hwang, J.K. and Kokini, J.L. Structural and rheological function of side branches of carbohydrate polymers. J. Texture Studies 22:123-167 (1991) https://doi.org/10.1111/j.1745-4603.1991.tb00011.x
  6. Wurzburg, O.B. Introduction pp. 4-13. In: Modified Starches:Properties and Uses, Wurzburg, O.B. (ed.), CRC Press, Boca Raton, FL, USA (1986)
  7. Glicksman, M. Plant seed gums: introduction, pp. 157. In: Hydro-colloids Vol. III, Glicksman, M. (ed.), CRC Press, Boca Raton,FL, USA (1986)
  8. Dea, I.C.M. The role of structural and modification in controlling polysaccharide functionality, pp. 207-216. In: Industrial Polysac-charitIes: Genetic Engineering, Structure/Property Relations and Applications, Yalpani, M. (ed.), Elsevier Applied Science Publish-ers, New York, USA (1987)
  9. John, M.A. and Dey, P.M. Postharvest changes in fruit cell wall Adv. Food Res. 30: 139-193 (1986) https://doi.org/10.1016/S0065-2628(08)60349-3
  10. Basic, A., Harris, P.J. and Stone, B.A. Structure and function of plant cell walls. Vol 14, pp. 309-314. In: The Biochemistry of Plants, Preiss, J. (ed.), Academic Press, New York, USA (1988)
  11. Hwang, J.K. and Kokini, J.L. Contribution of the side branches to rheological properties of pectins. Carbohydr. Polym. 19: 41-50(1992) https://doi.org/10.1016/0144-8617(92)90053-S
  12. Chou, T.C. and Kokini, J.L. Rheological properties and conforma-tion of tomato paste pectins, citrus and apple pectins. J. Food Sci. 52:1658-1664(1987) https://doi.org/10.1111/j.1365-2621.1987.tb05900.x
  13. Michel, R, Thibault, J.F. and Doublier, J.L. Characterization of commercial pectins purified by cupric acids, Sciences Des Ali-ments 1.4:569-576(1981)
  14. Rombouts, F.M. and Thibault, J.F. Feruloylated pectic substances from sugarbeet pulp. Carbohydr. Res. 154: 177-187 (1986) https://doi.org/10.1016/S0008-6215(00)90031-4
  15. Steffe, J.F. Rheological Methods in Food Process Engineering, Freeman Press, Michigan, USA (1992)
  16. Cross, M.M. Rheology of non-Newtonian flow: equation for pseudoplastic system. J. Colloid Sci. 20: 417-437 (1965) https://doi.org/10.1016/0095-8522(65)90022-X
  17. Carreau, P.J. Rheological equations from molecular network theo-ries. Ph.D. dissertation. Dept. of Chemical Engineering, Univer-sity of Wisconsin, Madison, USA (1968)
  18. Chhinnan, M.S., Mcwatters, K.H. and Rao, M. Rheological char-acterization of grain legume pastes and effect of hydration time and water level on apparent viscosity. J. Food Sci. 50: 1167(1985) https://doi.org/10.1111/j.1365-2621.1985.tb13036.x