상용하는 식물성 기름에서 지질과산화의 독성물질 4-hydroxy-2-alkenals 정량

Quantification of 4-Hydroxyalkenals in Oils Consumed in Korea

  • 발행 : 2002.10.01

초록

한국인이 상용하는 식물성 유지로부터 n-3 지방산과 n-6 지방산 산화의 독성 산물인 4-hydroxy-2-hexenal(HHE)과 4-hydroxy-2-nonenal(HNE)를 높은 감도로 동시 정량 하기 위하여 GC/MS/SIM(m/z = 157)을 이용하여 정량 하고 노출량을 추정하였다. 한국인이 섭취하는 식물성 유지의 98%를 차지하는 4종류의 유지로부터 4-hydroxy-2-alkenals의 총 노출량은 $2.7\;{\mu}g/day$로 나타났고, 시장에서 수거한 튀김 기름의 경우에는 상온에서 보관한 유지류에 비해 높은 양의 HHE와 HNE가 검출되었다. 튀김 과정 중에 형성된 4-hydroxy-2-alkenals는 튀김 음식으로 이행될 가능성이 있으므로, 튀김 음식을 자주 섭취하는 집단은 4-hydroxy-2-alkenals에 대한 노출량이 더 높을 것으로 사료된다. n-3와 n-6 지방산의 생리 활성에 대한 보고로 인하여 이들 고도 불포화 지방산의 섭취가 증가하고 있으므로, 불포화 지방산을 다량 함유하고 있는 식품으로부터 n-3와 n-6 지방산의 특이적 산화 지표인 4-hydroxy-2-hexenal과 4-hydroxy-2-nonenal을 동시 정량 하여 식품 품질 및 안전성 평가를 하는 것은 바람직하다고 생각된다. 본 실험에서 보여 준, 상용 식물성 유지의 4-hydroxy-2-alkenals 함량에 관한 데이터는 식품을 통해 노출된 4-hydroxy-2-alkenals가 인체에 미치는 생리적 효과를 평가하기 위한 앞으로의 연구에 중요한 정보를 제공할 것이다.

4-Hydroxyalkenals are cytotoxic aldehydes generated by the oxidation of n-6 and n-3 polyunsaturated fatty acids. To evaluate the potential risk of 4-hydroxyalkenals on Koreans, quantitative data of various oils are necessary. Simultaneous monitoring of 4-hydroxyhexenal and 4-hydroxynoneal in 39 samples including new and used ones through single ion monitoring mode of GC/MS detected both aldehydes in all samples tested, ranging from 0.21 to 26.9 nmol/g for 4-hydroxy-2-hexenal and 0.06 to 56.6 nmol/g for 4-hydroxy-2-nonenal. Frying oils collected from local markets showed 2.28-7.90 and 8.31-30.5 nmol/g of 4-hydroxyhexenal and 4-hydroxynoneal, respectively. National health and nutrition survey data were employed to determine the exposure effect to these 4-hydroxyalkenals from the four most consumed oils in Korea. Daily exposures to hydroxyalkenals excluding possible exposure from fried food were $1.9\;{\mu}g$ from soybean oil, $0.5\;{\mu}g$ from sesame oil, $0.2\;{\mu}g$ from corn oil, and $0.1\;{\mu}g$ from perilla oil. Due to the increasing consumption of polyunsaturated fatty acids in Korea, these data may provide valuable information for evaluating possible physiological effects of 4-hydroxyalkenals from vegetable oils.

키워드

참고문헌

  1. Lang, J., Celotto, C. and Esterbauer, H. Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by highperformance liquid chromatography. Anal. Biochem. 150: 369-378 (1985) https://doi.org/10.1016/0003-2697(85)90525-1
  2. Esterbauer, H., Zollner, H. and Schaur, R.J. Aldehydes formed by lipid peroxidation: mechanism of formation, occurrence, and determination, Vol. 1, pp. 239-268. In: Membrane Lipid Peroxidation. Carmen Vigo-Pelfrey (ed.). CRC press, Boca Raton, FL, USA (1990)
  3. Pryor, W.A. and Porter, N.A. Suggested mechanisms for the production of 4-hydroxy-2-nonenal from the autoxidation of polyunsaturated fatty acids. Free Rad. Biol. Med. 8: 541-543 (1990) https://doi.org/10.1016/0891-5849(90)90153-A
  4. Van Kuijk, F.J.G.M., Holte, L.L. and Dratz, E.A.: 4-hydroxyhexenal: a lipid peroxidation product derived from oxidized docosahexaenoic acid. Biochim. Biophys. Acta. 104: 116-118 (1990)
  5. Tamura, H., Kitta, K. and Shibamoto, T. Formation of reactive aldehydes from fatty acids in a $Fe^{2+}/H_2O_2$ oxidation system. 39: 439-442 (1991)
  6. Miyake, T. and Shibamoto, T. Simultaneous determination of acrolein, malondialdehyde and 4-hydroxy-2-nonenal produced from lipids oxidized with fenton's reagent. Food Chem. Toxicol. 34: 1009-1011 (1996) https://doi.org/10.1016/S0278-6915(96)00063-4
  7. Mlakar, A. and Spiteller, G. Previously unknown aldehydic lipid peroxidation compounds of arachidonic acid. Chem. Phys. Lipids 79: 47-53 (1996) https://doi.org/10.1016/0009-3084(95)02506-5
  8. Takamura, H. and Gardner, H.W. Oxygenation of (3Z)-alkenal to (2E)-4-hydroxy-2-alkenal in soybean seed. Biochim. Biophys Acta. 1303: 83-91 (1996) https://doi.org/10.1016/0005-2760(96)00076-8
  9. Turner, W.E., Hill, R.H.Jr., Hannon, W.H., Bernert, J.T.Jr., Killbourne, E.M. and Bayse, D.D. Bioassay screening for toxicants in oil samples from the toxic-oil syndrome outbreak in Spain. Arch. Environ. Contam. Toxicol. 14: 261-271 (1985) https://doi.org/10.1007/BF01055402
  10. Van Kuijk, F.J.G.M., Thomas, D.W., Stephens, R.J. and Dratz, E.A. Occurrence of 4-hydroxy-2-alkenals in rat tissues determines as pentafluorobenzyl oxime derivatives by gas chromatographymass spectrometry. Biochem. Biophys. Res. Commun. 139: 144-149 (1986) https://doi.org/10.1016/S0006-291X(86)80091-2
  11. Selley, M.L., Bartlett, M.R., Mcguiness, J.A., Hapel, A.J. and Ardlie, N.G. Determination of the lipid peroxidation product trans-4-hydroxy-2-nonenal in biological samples by high-performance liquid chromatography and combined capillary column gas chromatography-negative-ion chemical ionization mass spectrometry. J. Chromatogr. 488: 329-340 (1989) https://doi.org/10.1016/S0378-4347(00)82957-6
  12. Kinter, M., Sullivan, S., Roberts, R.J. and Spitz, D. Trace quantitation of 4-hydroxy-2-nonenal in biological samples as its oxime-bis-tert-butyldimethylsilyl derivative using 3-hydroxynonanal as an internal standard. J. Chromatogr. 578: 9-16 (1992) https://doi.org/10.1016/0378-4347(92)80219-G
  13. Gerard-Monnier, D., Erdelmeier, I., Regnard, K., Moze-Henry, N., Yadan, J. C. and Chaudiere, J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals; Analytical application to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 11: 1176-1183 (1998) https://doi.org/10.1021/tx9701790
  14. Gioacchini, A.M., Calonghi, N., Boga, C., Cappadone, C., Masotti, L., Roda, A. and Traldi, P. Determination of 4-hydroxy-2-nonenal at cellular levels by means of electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 13: 1573-1579 (1999) https://doi.org/10.1002/(SICI)1097-0231(19990815)13:15<1573::AID-RCM675>3.0.CO;2-Z
  15. Claeson, K., Thorsen, G. and Karlberg, B. Micellar electrokinetic chromatography separation and laser-induced fluorescence detection of the lipid peroxidation product 4-hydroxyalkenal. J.Chromatogr. B 763: 133-138 (2001) https://doi.org/10.1016/S0378-4347(01)00374-7
  16. Sodium, R.S. and Chung, F.L. 1,N2-ethenodeoxyguanosine as a potential marker for DNA adduct formation by trans-4-hydroxy-2-nonenal. Cancer Res. 48: 320-323 (1988)
  17. Zollner, H., Schaur, R.J. and Esterbauer, H. Biological activities of 4-hydroxyalkenals, pp. 337-369. In: Oxidative Stress, Oxidants and Antioxidants. Helmut Sies (ed.). Academic Press Inc, San Diego, CA, USA (1991)
  18. Bruenner, B.A., Jones, A.D. and German, J.B. Direct characterization of protein adducts of the lipid peroxidation product 4-hydroxy-2-nonenal using electrospray mass spectrometry. Chem. Res. Toxicol. 8: 552-559 (1995) https://doi.org/10.1021/tx00046a009
  19. Sakai, T., Kuwazuru, S., Yamauchi, K. and Uchida, K. A lipid peroxidation-derived aldehydes, 4-hydroxy-2-nonenal and $\omega$-6 fatty acids contents in meats. Biosci. Biotech. Biochem. 59: 1379-1380 (1995) https://doi.org/10.1271/bbb.59.1379
  20. Sakai, T. and Kuwazuru, S. A lipid peroxidation-derived aldehydes, 4-hydroxy-2-nonenal, contents in several fish meats. Fisheries Sci. 61: 527-528 (1995) https://doi.org/10.2331/fishsci.61.527
  21. Sakai, T., Yamauchi, K., Kuwazuru, S. and Gotoh, N. Relationships between 4-hydroxy-2-nonenal, 2-thiobarbituric acid reactive substances and n-6 polyunsaturated fatty acids in refrigerated and frozen pork. Biosci. Biotech. Biochem. 62: 2028-2029 (1998) https://doi.org/10.1271/bbb.62.2028
  22. Bartsch, H. and Nair, J. Ultrasensitive and specific detection methods for exocylic DNA adducts: Markers for lipid peroxidation and oxidative stress. Toxicol. 153: 105-114 (2000) https://doi.org/10.1016/S0300-483X(00)00307-3
  23. Lepage, G. and Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 27: 114-120 (1986)
  24. Esterbauer, H. and Weger, W. Uber die wirkungen von aldehyden auf gesunde und maligne zellen, 3. mitt: Synthese von homologen 4-hydroxy-2-alkenalen, II. Monatsh. Chem. 98: 1884-1897 (1967) https://doi.org/10.1007/BF01167149
  25. Dutt, M.C. Gas chromatographic identification of common drugs by their multiple peaks and those of their trimethylsilyl derivatives. J. Chromatogr. 248: 115-124 (1982) https://doi.org/10.1016/S0021-9673(00)83743-7
  26. Korea Health Industry Development Institute. Report on 1998 national health and nutrition survey (Dietary intake survey), pp. 76-77. Ministry of Health and Welfare, Seoul (1999)
  27. Esterbauer, H., Schaur, R.J. and Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Rad. Biol. Med. 1: 81-128 (1991)
  28. Deman, J.M. Lipids, pp. 33-110. In: Principles of Food Chemistry, 3rd ed. Aspen Publishers Inc, Gaithersburg, ML, USA (1999)
  29. Schauenstein, E. and Esterbauer, H. Formation and properties of reactive aldehydes. Ciba Found. Ser. 67: 225-244 (1979)
  30. Segall, H.J., Wilson, D.W, Dallas, J.L. and Haddon, W.F. Trans-4-hydroxy-2-hexenal: A reactive metabolite from the macrocyclic pyrrolizidine alkaloid senecionine. Science 299: 472-475 (1985)
  31. Leaf, A. and Weber, P.C. Cardiovascular effects of n-3 fatty acids. N. Engl. J. Med. 318: 549-557 (1988) https://doi.org/10.1056/NEJM198803033180905
  32. Simopoulos, A.P. Summary of NATO advanced research workshop on dietary ($\omega$-3 and ($\omega$-6 fatty acids: Biological effects and nutritional essentiality. J. Nutr. 119: 521-528 (1989)