Purified Polysaccharide Activating the Complement System from Leaves of Diospyos kaki L.

감잎(Diospyos kaki L.)으로부터 정제한 보체계 활성화 다당류

  • Jung, Yung-Joo (Graduate School of Biotechnology, Korea University) ;
  • Chun, Hyug (Graduate School of Biotechnology, Korea University) ;
  • Kim, Kyung-Im (Graduate School of Biotechnology, Korea University) ;
  • An, Jeung-Hee (Graduate School of Biotechnology, Korea University) ;
  • Shin, Dong-Hoon (Graduate School of Biotechnology, Korea University) ;
  • Hong, Bum-Shik (Graduate School of Biotechnology, Korea University) ;
  • Cho, Hong-Yon (Graduate School of Biotechnology, Korea University) ;
  • Yang, Han-Chul (Graduate School of Biotechnology, Korea University)
  • 정영주 (고려대학교 생명공학원) ;
  • 전혁 (고려대학교 생명공학원) ;
  • 김경임 (고려대학교 생명공학원) ;
  • 안정희 (고려대학교 생명공학원) ;
  • 신동훈 (고려대학교 생명공학원) ;
  • 홍범식 (고려대학교 생명공학원) ;
  • 조홍연 (고려대학교 생명공학원) ;
  • 양한철 (고려대학교 생명공학원)
  • Published : 2002.10.01

Abstract

Cold and hot water fractions of Diospyros kaki were screened to determine its anti-complementary activity. Flour of Diospyros kaki leaf (250 g) was boiled at $100^{\circ}C$ for 3 h and passed through a membrane of 10 kDa molecular weight (DK-0). DK-0 was precipitated with ethanol and refluxed with methanol to obtain the crude polysaccharide (DKC). DKC-1 was isolated by ion exchange chromatography on DEAE-Toyopearl 650C, and DKC-1c was purified from DKC-1 by size exclusion chromatography on Bio gel P-60. The anti-complementary activities of DKC-1c at $1000\;{\mu}g/mL$ were 85.4 and 61.1% via whole and alternative pathways, respectively. DKC-1c was determined as a neutral polysaccharide composed of glucose (29.0 mol.%), arabinose (24.3 mol.%), and galactose (16.2 mol.%) with the molecular weight of 66.6 kDa. Results of agarose gel immunoelectrophoresis revealed DKC-1c, as a complement activator, cleaved C3 into C3a and C3b via both pathways.

감잎으로부터 항보체 활성물질을 분리정제하기 위해 감잎 (250 g)을 $100^{\circ}C$에서 3시간 동안 열수 추출하고 분자량 10 kDa membrane을 사용하여 농축한 후 ethanol 침전과 methanol 추출을 통해 조다당류(DKC)를 얻었다. 조다당류의 정제는 DEAE-Toyopearl 650C와 Bio-gel P60을 사용하여 실시하였다. 정제된 DKC-1c는 $1000\;{\mu}g/mL$의 농도에서 고전경로를 통해서는 85.4% 활성화시켰고 부경로에서는 65.1% 활성화시켰다. 정제 다당류 DKC-1c는 분자량은 66.6 kDa이고 정제도가 높은 중성다당류로써 주요 구성당은 glucose(29.0 mol.%), arabinose(24.3 mol.%), galactose(16.2 mol.%) 순으로 검출되었다. 면역전기영동을 통하여 확인한 결과 DKC-1c는 C3를 부경로에서도 C3a와 C3b로 활성화시키는 complement activator임이 확인되었다.

Keywords

References

  1. Joung. S.Y., Lee, S.J., Sung, N.J., Jo, J.S. and Kang, S.K. The chemical composition of persimmon (Diospyos kaki, Thumb) leaf tea. J. Korean Soc. Food Nut. 24: 720-726 (1995)
  2. Choi, S.H. The aroma components of duchung tea and persimmon leaf tea. Korean J. Food Sci. Technol. 22: 405-410 (1990)
  3. Matsuo, T. and Ito, S. The chemical structure of Kaki tannin from immature fruit of the persimmon. Agric. Biol. Chem. 42: 1637-1639 (1978) https://doi.org/10.1271/bbb1961.42.1637
  4. Funayama, S. and Hikino, H. Hypotensive principles of Diospyros kaki leaves. Chem. Pharm. Bull. 27: 2865-2868 (1979) https://doi.org/10.1248/cpb.27.2865
  5. Kameda, K., Takaku, T., Okuda, H., Kimura, Y., Okuda, T., Hatano, T., Agata, I. and Arichi, S. Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J. Nat. Prod. 50: 680-683 (1987) https://doi.org/10.1021/np50052a017
  6. Innami, S., Tabata, K. and Shimizu, J. Dried green leaf powders of Jew's mellow (Corchorus), Persimmon (Diosphyros kaki) and sweet potato (Ipomoea batatas poir) lower hepatic cholesterol concentration and increase fecal bile acid excredon in rats fed a cholesterol-free diet. Plant Foods Human Nutr. 52: 55-59 (1998) https://doi.org/10.1023/A:1008031028484
  7. Paeng, N., Kido, N., Schmidt, G.K., Sugiyama, T., Kato, Y., Noide, N. and Yokochi, T. Augmented immunological activities of recombinant lipopolysaccharide possessing the mannose homopolymer as the O-specific polysaccharide. Infect. Immunity. 64: 305-309 (1996)
  8. Muschel, L.H., Schmocker, K. and Webb, P.M. Anti-complementary action of endotoxin. Proc. Soc. Exp. Biol. Med. 117: 639-646 (1964) https://doi.org/10.3181/00379727-117-29657
  9. Schenkein, H.A. and Ruddy, S. The role of immunoglobulins in alternative complement pathway activation by zymosan 1. Human IgG with specificity for zymosan enhances alternative pathway activation by zymosan. J. Immunol. 126: 7-15 (1981)
  10. Thiel, S. Vorup-Jensen, T., Stover, C.M., Schwaeble, W., Laursen, S.B., Poulsen, K., Willis, A.C., Eggleton, P., Hansen, S., Holmskov, U., Reid, K.B. and Jensenius, J.C. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386: 506-510 (1997) https://doi.org/10.1038/386506a0
  11. Chihara, G., Hamuro, J., Maeda, Y.Y., Siio, T. and Suga, T. Antitumor and metastasis-inhibitory activities of lentinan as an immunomodulator: an overview. Cancer Detet. Prev. 1: 423-443 (1987)
  12. Tsukagoshi, S., Hashimoto, Y., Fujii, G., Kobayashi, H., Nomoto, K. and Orita, K. Krestin (PSK). Cancer Treat. Rev. 11: 131-155 (1984)
  13. Yamada, H., Kiyohara, H., Cyong, J.C. and Otsuka, Y. Structural characterization of anti-complementary arabinogalactan from the roots of Angelica acutiloba Kitagawa. Carbohydr. Res. 159: 275-291 (1987) https://doi.org/10.1016/S0008-6215(00)90221-0
  14. Kiyohara, H. and Yamada, H. Structure of an anti-complementary arabinogalactan from the root of Angelica acutiloba Kitagawa. Carbohydr. Res. 193: 173-192 (1989) https://doi.org/10.1016/0008-6215(89)85117-1
  15. Yamada, H., Ra, K.S., Kiyohara, H., Cyong, J.C. and Otsuka, Y. Structural characterization of an anti-complementary pectic polysaccharide from the roots of Bupleurum falcatum L. Carbohydr. Res. 189: 209-226 (1989) https://doi.org/10.1016/0008-6215(89)84098-4
  16. Gao, Q.P., Kiyohara, H., Cyong J.C. and Yamada H. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng C. A. Meyer. Planta Med. 57: 132-136 (1991) https://doi.org/10.1055/s-2006-960049
  17. Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Platago major L. J. Ethnopharmacol. 71: 1-21 (2000) https://doi.org/10.1016/S0378-8741(00)00212-9
  18. Kiyohara, H., Takemoto, N., Zhao, J.F., Kawamura, H. and Yamada, H. Pectic polysaccharides in the galacturonase-resistant region to anticomplementary and mitogenic activities. Plata Med. 62: 14-19 (1996) https://doi.org/10.1055/s-2006-957787
  19. Harris, C.L., Kan, K.S., Stevenson, G.T. and Morgan, B.P. Tumour cell killing using chemically engineered antibody constructs specific for tumor cells and the complement inhibitor CD59. Clin. Exp. Immunol. 107: 364-371 (1997) https://doi.org/10.1111/j.1365-2249.1997.265-ce1156.x
  20. Latremouille, C., Genevaz, D., Hu, M.C., Schussler, O., Goussef, N., Mandet, C., Bruneval, P., Haeffner-Cavaillon, N., Carpentier, A. and Glotz, D. Normal human immunoglobulins for intravenous use (IVIg) delay hyperacute xenograft rejection through F(ab')2-mediated anti-complement activity. Clin. Exp. Immunol. 110: 122-126 (1997) https://doi.org/10.1111/j.1365-2249.1997.459-ce1358.x
  21. Kim, K.I., Shin, K.S., Jun, W.J., Hong, B.S., Shin, D.H., Cho, H.Y., Chang, H.I., Yoo, S.M. and Yang, H.C. Effects of polysaccharides from rhizomes of Curcuma zedoaria on macrophage functions. Biosci. Biotechnol. Biochem. 65: 2369-2377 (2001) https://doi.org/10.1271/bbb.65.2369
  22. Wang, N.L., Kiyohara, H., Sakurai, M.H. and Yamada, H. Antigenic epitope for polyclonal antibody against a complement activating pectin from the roots of Angelica acutiloba Kitagawa. Carbohydr. Polym. 39: 257-264 (1999) https://doi.org/10.1016/S0144-8617(99)00009-0
  23. Dubois, M., Hamilton, K.A., Rebers, J.K. and Sonisth, F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  24. Blumenkrantz, N. and Asboe-Hansen, G. New method for quantitative determination of uronic acid. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  25. Lowry, O.H., Rosebrough, N.J., Farr, L. and Rindall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  26. Jones, T.M. and Albersheim, P.O. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharide. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
  27. Mayer, M.M. Complement and complement fixation, 2nd ed. pp. 133-240, In: Experimental Immunochemistry. Kabat, E.A. and Mayer, M.M. (eds.). Charles C. Thomas Publisher, IL, USA (1971)
  28. Kiyohara, H., Cyong, J.C. and Yamada, H. Relationship between structure and activity of an anti-complementary arabinogalactan from the roots of Angelica acutiloba Kitagawa. Carbohydr. Res. 193: 193-200 (1989) https://doi.org/10.1016/0008-6215(89)85118-3
  29. Morrison, D.C. and Kline, L.F. Activation of the classical and properdin pathways of complement by bacterial lipopolysaccatides (LPS). J. Immunol. 188: 362-368 (1977)
  30. Chihara, G., Hamuro, J., Maeda, Y., Arai, Y., and Fukuok, F. Antitumor polysaccharide derived chemically from natural glucan (Pachyman). Nature 225: 7-12 (1970)