Removal of Organic Matter and Nitrogen from River Water in a Model System of Floodplain Filtration

홍수터 여과 모형을 이용한 하천수중의 유기물과 질소 제거

  • 하현수 (영남대학교 환경공학과) ;
  • 김상태 (영남대학교 환경공학과) ;
  • 김승현 (영남대학교 환경공학과) ;
  • 정병룡 (대구대학교 생명자원학부 식량자원학) ;
  • 이영득 (대구대학교 생명환경학부 농화학) ;
  • 엄진섭 (대구대학교 생명환경학부 농화학) ;
  • 지승환 (대구대학교 생명자원학부 식량자원학) ;
  • 정종배 (대구대학교 생명환경학부 농화학)
  • Published : 2002.05.31

Abstract

If contaminated river water is sprayed over the floodplain, organic matter and nitrogen would be removed by microbial processes in the rhizosphere of vegetation during the filtration through soil. In this study we tested the organic matter and nitrogen removal from contaminated river water by the floodplain filtration. Model system of floodplain was constructed using a PVC pipe (15 cm i.d. ${\times}$ 150 cm L) which was packed with a loamy sand soil collected from a floodplain in Nakdong river. The model system was instrumented with soil solution samplers and gas samplers. A river water collected from Omogcheon in Kyongsan was sprayed from top of the model system at three different rates. The concentration of organic matter, DO, $NO_3^-$, $NO_2^-$, $NH_4^+$, $N_2$ and $N_2O$, and redox potential were measured as a function of soil depth for 24 days after the system reached a steady state. When river water was sprayed at the rates of 40.8 and 68.0 $l/m^2/day$, a significant reductive condition for denitrification was developed at below 5-cm depth of the soil. When the water reached at 90-cm depth of the soil, COD and concentration of inorganic nitrogen were lowered, on an average, from 18.7 to 5 mg/l and from 2.7 to 0.4 mg/l, respectively. $N_2$ comprised most of the N gas evolved from denitrification and $N_2O$ concentrations emitted at the surface of soil were less than 1 {\mu}l/l. The effective removal of organic matter and nitrogen by the filtration in the model system of floodplain demonstrates that the native floodplains, which include rhizosphere of vegetation at the top soil, could be more effective in the treatment of contaminated river waters and other industrial waste waters containing high concentration of organic matter and nitrogen.

유기물과 질소 함량이 높은 하천수가 대하천에 유입되기전 소하천의 잡초가 자라는 홍수터에 살포하여 사질 토층을 수직 이동하는 동안 잡초의 근권에서 유기물의 분해와 함께 탈질에 의해 질소가 제거되도록 하는 홍수터 여과공법을 개발하였다. 직경 15cm, 길이 150cm의 PVC pipe에 실제 홍수터에서 채취한 사질의 토양을 충진하여 제작된 홍수터 모형에 하천수를 27.2, 40.8, $68.0\;ml/day/m_2$의 유량으로 연속적으로 살포하고 정상상태에 이른 후 토양 깊이별로 토양 용액을 채취하여 유기물과 $NO_3-N$을 비롯한 무기질소의 이동과 제거 현상을 조사하였고 토양 기체를 채취하여 $N_2$$N_20$의 발생 현상을 측정하였다. 포화상태에 가까운 수준으로 유량을 조절할 경우 하천수에 포함된 유기물만을 이용하더라도 매우 효과적인 탈질 환경이 5cm깊이 부근의 표층 토양에서부터 형성되었으며 유기물의 제거와 함께 질소도 효과적으로 제거할 수 있는 것으로 나타났다. 90cm깊이의 홍수터 토양을 통과하는 동안 평균적으로 COD는 18.7에서 5mg/l로 무기질소함량은 2.7에서 0.4mg/l로 정화되었다. 탈질 기체는 대부분 $N_2$ 형태로 발생되었으며 온실효과와 오존층 파괴를 유발하는 $N_2O$ 발생량은 매우 적었다. 표층 토양에 잡초의 근권이 형성되어 있는 실제 홍수터에 이와 같은 기법을 적용할 경우 모형 실험에서 나타난 결과보다 더욱 활발한 탈질 현상이 유발될 수 있을 것으로 판단된다. 이러한 홍수터 여과는 부지가 따로 필요하지 않으므로 시설 및 운영비가 경쟁기술에 비해 싸고, 화학약품 처리나 슬러지 발생이 없는 환경친화적인 하천수 처리방법이 될 것으로 기대되며, 하천수 외에도 도시하수나 산업폐수의 3차 처리에도 응용되어 하폐수의 재활용을 통한 수자원의 절약과 하천수량의 증대에도 기여할 수 있을 것이다.

Keywords

References

  1. Kwun, S. K. (1998) Management, improvement and perspective on nonpoint sources of water pollution in Korea. J. Korean Soc. Ewimn. Enein. 20, 1497-1510
  2. Chung, J. B., Kim, B. J. and Kim, J. K. (1997) Water pollution in some agricultural areas along Nakdong river. Korean J. Envimn. Agric. 16, 187-192
  3. Miller, R. W. and Donahue, R. L. (1990) In Soils, an Introduction to Soils and Plant Growth (6th ed.) Prentice-Hall Inc., Englewood Cliffs, New Jersey
  4. Vance, G. R, Pierzynski, G. M. and Sims, J. T. (1994) In Soil and Environmental QuaIity Lewis Publishers, Boca Raton, Florida
  5. Pathck, W. H. and Jugsujinda, A. (1992) Sequential reduction oxidation of inorganic nitrogen, manganese and iron in flooded soil. Soit Sci. Soc. Am. J. 56, 1071-1073 https://doi.org/10.2136/sssaj1992.03615995005600040011x
  6. Collin, M. and Rasmuson, A. (1988) A comparison of gas diffusmty models for unsaturated porous media. Soil Sci. Soc. Am. J. 52, 1559-1565 https://doi.org/10.2136/sssaj1988.03615995005200060007x
  7. Ouyang, Y. and Boersma, L. (1992) Dynamic oxygen and carbon dioxide exchange between soil and atmosphere: I. Model development. Soil Sci. Soc. Am. J. 56, 1695-1702 https://doi.org/10.2136/sssaj1992.03615995005600060006x
  8. Reddy, K. R., Sacco, P. D., Graetz, D. A., Campbell, K. L. and Sinclair, L. R. (1982) Water treatment by aquatic ecosystems: Nutrient removal by reservoirs and flooded fields. Environ. Manase. 6, 261-271
  9. Reddy, K. R. and Patrick, W. H. (1984) Nitrogen transformations and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Control. 13, 273-309 https://doi.org/10.1080/10643388409381709
  10. Jacobs, T. C. and GUliam, J. W. (1985) Riparian losses of nitrate from agricultural drainage waters. J. Environ. Qual. 14, 472-478 https://doi.org/10.2134/jeq1985.00472425001400040004x
  11. Smith, R. L. and Duff, J. H. (1988) Denitrification in a sand and gravel aquifer. Appt. Environ. Micmbiol. 54, 1071-1078
  12. DeSimone, L. A. (1998) Nitrogen transport and transformation in a shallow aquifer receiving waste-water discharge: A mass balance approach. Water Resour. Res. 34, 271-285 https://doi.org/10.1029/97WR03040
  13. Ambus, P. and Christensen, S. (1993) Denitrificadon variability and control in a npahan fen irrigated with agricultural drainage water. Soil Biol. Biochem. 25, 915-923 https://doi.org/10.1016/0038-0717(93)90094-R
  14. Andersen, F.$\phi$. and Hansen, J. I. (1982) Nitrogen cycle and microbial decomposition in sediments with Phragmites australis (Poaceae). Hydrobiol. Butll. 16, 11-19 https://doi.org/10.1007/BF02255409
  15. Cooper, A. B; (1990) Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydmbiotogia 202, 13-26
  16. Magg, M., Malinovsky, M. and Nielsen, S. M. (1997) Kinedcs and temperature dependence of potential denitrification in riparian soils. J. Envimn. Qual. 26, 215-223
  17. K1iewer, B. A. and Gilliam, J. W. (1995) Water table management effects on denitrificadon and nitrous oxide evolution. Soil Sci. Soc. Am. J. 59, 1694-1701 https://doi.org/10.2136/sssaj1995.03615995005900060027x
  18. Jacinthe P., Dick, W. A. and Brown, L. C. (2000) Bioremediation of nitrate-contaminated shallow soils and waters via water table management techniques: evolution and release of nitrous oxide. Soil Biol. Biochem. 32. 371-382 https://doi.org/10.1016/S0038-0717(99)00163-7
  19. Korea Water Resources Corporation. (1996) hi Survey Report on the Attuvial Aquifers in Korea Korea Water Resources Corporation, Anyang, Korea
  20. Miller, W. P. and Miller, D. M. (1987) A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Ptant Anal. 18, 1-15 https://doi.org/10.1080/00103628709367799
  21. Nelson, D. W. and Sommers, L. E. (1982) Total carbon, organic carbon, and organic matter, In Methods of Soil Anatysis, Part 2: Chemical and Micmbiotogical Properties. Page, A. L. et at. (ed.) SSSA, Madison, WI. pp. 539-579
  22. Chung, Y. K. (1988) Cation exchange capacity, In Methods of Soit Chemkat Anatysis. Han, K. H. (ed.) National Institute of Agricultural Science and Technology, Suwon, Korea. pp. 117-124
  23. American Public Health Associadon. (1998) In Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington D.C
  24. Dendooven, L., Splatt, P., Anderson, J. M. and Scho1efie1d, D. (1994) Kinetic of the denitrification process in a soil under permanent pasture. Soil Biol. Biochem. 26, 361-370 https://doi.org/10.1016/0038-0717(94)90285-2
  25. Cho, C. M., Burton, D. L. and Chang, C. (1997) Kinedc formulation of oxygen consumption and denitrification processes in soil. Can. J. Soil Sci. 11, 253-260
  26. Cho, C. M., Burton, D. L. and Chang, C. (1997) DenitriScadon and fluxes of nitrogenous gases from soil under steady oxygen distribution. Can. J. Soil Sci. 77, 261-269 https://doi.org/10.4141/S96-057
  27. Cierone, R. J. (1987) Changes in stratospheric ozone. Science 237, 35-42 https://doi.org/10.1126/science.237.4810.35
  28. Yung, Y 14 Wang, W. C. and Lacis, A. A. (1976) Greenhouse effects due to nitrous oxide. Geophys. Res. Lett. 3, 619-621 https://doi.org/10.1029/GL003i010p00619
  29. Schipper, L. A., Cooper, A. B., Harfoot, C. G. and Dyck, W. J. (1993) Regulators of denitrification in an organic riparian soU. Soil Biol. Biochem. 25, 925-933 https://doi.org/10.1016/0038-0717(93)90095-S