Improved Breast Irradiation Techniques Using Multistatic Fields or Three Dimensional Universal Compensators

Multistatic Field또는 3차원 공용보상체를 사용한 유방의 방사선 조사법의 평가

  • Han Youngyih (Department of Radiation Oncology, Yonsei University, College of Medicine) ;
  • Cho Jae Ho (Department of Radiation Oncology, Yonsei University, College of Medicine) ;
  • Park Hee Chul (Department of Radiation Oncology, Yonsei University, College of Medicine) ;
  • Chu Sung Sil (Department of Radiation Oncology, Yonsei University, College of Medicine) ;
  • Suh Chang-Ok (Department of Radiation Oncology, Yonsei University, College of Medicine)
  • 한영이 (연세대학교 의과대학 방사선종약학교실, 연세암센터) ;
  • 조재호 (연세대학교 의과대학 방사선종약학교실, 연세암센터) ;
  • 박희철 (연세대학교 의과대학 방사선종약학교실, 연세암센터) ;
  • 추성실 (연세대학교 의과대학 방사선종약학교실, 연세암센터) ;
  • 서창옥 (연세대학교 의과대학 방사선종약학교실, 연세암센터)
  • Published : 2002.03.01

Abstract

Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.

목적 : 유방보존 수술 후 행하는 방사선치료인 2문 대칭조사(two tangential field technique)시 나타나는 선량분포의 불균일성을 효과적으로 개선하기 위하여, multistatic fields의 사용법과 공용보상체 사용법을 제시하고 평가하였다. 대상 및 방법 : 1) Multistatic field 방법 3차원의 치료계획용 software (RTP)를 이용하여, wedge를 사용한 2문 대칭 조사의 최적의 치료계획을 시행한 후 beam's eye view상에서 과조사가 일어나는 부분을 가리워 주도록 blocked field를 설계하고, 그 beam에 대칭되는 beam을 만들었다. 기존의 2개의 tangential field와 추가된 field의 weighting을 최적의 선량분포를 갖도록 조절하였다. 2) 공용보상체 사용법 : 1999와 2000년에 본원에서 whole-breast radiotherapy를 받은 환자 20명의 유방의 크기를 측정하고 평균하여 표준 유방 모델을 만들었다. 이 모델에 대하여 공용보상체를 설계하고, 설계된 공용보상체의 geometry를 RTP에 입력한 후 환자의 치료 계획을 수행하였다. 2문 대칭조사 치료 계획과, multistatic fields의 경우 그리고 공용 보상체를 사용한 경우의 치료계획에서의 불균일도(DII : 처방선량의 $95-105\%$를 벗어나는 PTV의 부피의 백분율), 최대선량 값$(D_{max})$ 그리고 등가선량 곡선을 각각 비교하였다. 결과 : Multistatic field 방법은 DII의 평균값을 $14.6\%$ (p value<0.000) 낮추고 $D_{max}$$4.7\%$ (p value<0.000) 낮춤으로써, 전통적인 2문 대칭 조사법보다 우수한 방법으로 확인되었다. 반면에 공용보상체의 사용은 평균 DII를 $3.7\%$ 낮추지만(p value=0.260) 평균 $D_{max}$는 거의동일 하여($0.3\%$ 감소, p value=0.867), 전통적인 방법보다 우수성이 크게는 없는 것으로 평가되었다. 그러나 환자의 체곡선이 보상체와 잘 일치하는 경우에는 DII가 $18\%$까지 감소하였다. 결론 : Multistatic field 방법은 모든 환자에 대하여 선량분포의 균일성을 전반적으로 향상시키는 효과적인 방법으로 평가되는 반면 공용보상체의 사용은 보상체의 크기가 환자의 체 윤곽과 잘 일치하는 경우만 효과적으로, 적용의 범위에는 한계가 있는 방법으로 평가되었다.

Keywords

References

  1. Buchholz TA, Gurogze E, Bice WS, et al. Dosimetricanalysis of intact breast irradiation in off-axis planes, Int J Raidat Oncol Biol Phys 1997;39;261-267 https://doi.org/10.1016/S0360-3016(97)00292-7
  2. A Aref, D Thornton, E Youssef, et al. Tangential breastirradiation: A comparison between 2D and 3D radiation therapy plans, European Journal of Cancer,1998;34(Suppl 5):S60
  3. Asselen BV, Raaijmakers C, Hofman P, et al. An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiather Oncol, 2001;58:341-347 https://doi.org/10.1016/S0167-8140(00)00278-4
  4. Cheng C, Das IJ, Stea B. The effect of the number of computed tomography slices on dose distributions and evaluation of treatment planning systems for radiation therapy of intact breast. Int J Raidat Oncol Biol Phys 1994;30:183-195 https://doi.org/10.1016/0360-3016(94)90678-5
  5. Neal AJ. Torr M, Helyer S, et al. Correlation of breastheterogeneity with breast size using 3D CT planning and dose-volume histograms. Radiother Oncol 1995;34:210-218 https://doi.org/10.1016/0167-8140(95)01521-H
  6. Solin LJ, Chu JCH, Sontag MR, et al. Three-dim ensionalphoton treatment planning of the intact breast. Int J Raidat Oncol Biol Phys 1991;21:193-203
  7. A Aref, D Thornton, E Youssef, et al. Dosimetric improvements following 3D planning of tangential breast irradiation, Int J Radiat Oncol Biol Phys 2000;48:1569-1574
  8. International Commission on Radiation Units and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy, ICRU Reports 50, Bethesa, MD: ICRU, 1993
  9. Moody AM, Mayles WPM, Bliss JM, et al. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol 1994;33:106-112 https://doi.org/10.1016/0167-8140(94)90063-9
  10. Taylor ME, Perez CA, Halverson KJ, et al. Factors infuencing cosmetic results after conservation therapy for breastcancer, Int J Radiot Oncol Biol Phys 1995;31:753-764
  11. Moody AM, Mayles WPM, Bliss JM, et al. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol 1994;33:106-112 https://doi.org/10.1016/0167-8140(94)90063-9
  12. Neal AJ, Torr M, Helyer S, et al. Correlation of breast heterogeneity with breast size using 3D CT planning and dose- volume histogram. Radiother Oncol 1995;34:210-218 https://doi.org/10.1016/0167-8140(95)01521-H
  13. Gagliardi G, Bjohle J, Lax I, et al. Radiation pneumonitisafter breast cancer irradiation: Analysis of the complicationprobability using the relative seriality model. Int J Radiot Oncol Biol Phys 2000;46:373-381 https://doi.org/10.1016/S0360-3016(99)00420-4
  14. Asbury L, Luttrell L, Lake D. Achieving uniform dose with the use of a custom tissue compensator and a leveled beam for tangential breast fields. Medical Dosimetry 1989;14:161-171 https://doi.org/10.1016/0958-3947(89)90203-3
  15. Valdagni R, Ciocca M, Busana L, et al. Beam modifyingdevices in the treatment of early breast cancer : 3-D steppedcompensating technique. Radiother Oncol 1992:23:192-195
  16. Hansen VN, Evans PM, Shentall GS, et al. Dosimetricevaluation of compensation in radiotherapy of the breast:MLC intensity modulation and physical compensators. Radiother Oncol 1997;42:249-256 https://doi.org/10.1016/S0167-8140(96)01895-6
  17. Mayles WP, Yarnold JR, Webb S. Improved dose homogeneity in the breast using tissue compensators. Radiother Oncol 1991;22:248-251 https://doi.org/10.1016/0167-8140(91)90158-D
  18. Evans PM, Hansen VN, Mayles WPM, et al. Design of compensators for breast radiotherapy using electronic portalimaging. Radiother Oncol 1995;37:43-54 https://doi.org/10.1016/0167-8140(95)01617-P
  19. Evans PM, Donovan EM, Fenton N, et al. Practical implementation of compensators in breast radiotherapy. Radiother Oncol 1998;49:255-265 https://doi.org/10.1016/S0167-8140(98)00126-1
  20. Carruthers LJ, Redpath AT, Kunkler IH. The use of compensatorspensators to optimize the three dimensional dose distribution in radiotherapy of the intact breast. Radiother Oncol 1999;50:291-300 https://doi.org/10.1016/S0167-8140(98)00141-8
  21. Hong L, Hunt M, Chui C, et al. Intensity-Modulated tangential beam irradiation of the intact breast. Int J Raidat Oncol Biol Phys 1999;44:1155-1164 https://doi.org/10.1016/S0360-3016(99)00132-7
  22. Kestin LL, Sharpe MB, Frazier RC, et al. Intensitymodulation to improve dose uniformity with tangential breast radiotherapy: Initial clinical experience. Int J Radiat Oncol Biol Phys 2000;48:1559-1568 https://doi.org/10.1016/S0360-3016(00)01396-1
  23. Evans PM, Donovan EM, Partridge M, et al. The delivery of intensity modulated radiotherapy to the breast using multiple static fields. Radiother Oncol 2000;57:79-89 https://doi.org/10.1016/S0167-8140(00)00263-2
  24. Donovan EM, Johnson U, Shentall G, et al. Evaluation of compensation in breast radiotherapy: a planning study usingmultiple static fields, Int J Radiat Oncol Biol Phys 2000;46:671-679
  25. Asselen BV, Raaijmakers CPJ, Hofman P, et al. An improved breast irradiation technique using three-dimensionalgeometrical information and intensity modulation. Radiother OncoI 2001;58:341-347 https://doi.org/10.1016/S0167-8140(00)00278-4
  26. Lo YC, Yasuda G, Fitzgerald TJ, Urie MM. Intensity modulation for breast treatment using static multi-leaf collimators. Int J Radiat Oncol Biol Phys 2000;46:187-194 https://doi.org/10.1016/S0360-3016(99)00382-X
  27. Khan FM The physics of radiation Therapy, 2nd ed, Baltimore; William & Wilkins, 1994:300-301
  28. Boge RJ, Edland RW, Matthes DC. Tissue compensators for magavoltage radiotherapy fabricated from hollowed Styrofoam filled with wax. Radiology 1974;111:193-198 https://doi.org/10.1148/111.1.193
  29. Khan FM, Moor VC, Burn DJ. The construction of compensators for cobalt teletherapy. Radiology 1970;96:187-192 https://doi.org/10.1148/96.1.187