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A Fast Inversion Method for Interpreting Single-Hole Electromagnetic Data
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Abstract : A computationally efficient inversion scheme has been developed using the extended Born or localized
nonlinear approximation to analyze electromagnetic fields obtained in a single-hole environment. The medium is assumed
to be cylindrically symmetric about the borehole, and to maintain the symmetry vertical magnetic dipole source is used
throughout. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange
multiplier, which is often provided manually to achieve desired convergence. In this study, an automatic Lagrange
multiplier selection scheme has been developed to enhance the utility of the inversion scheme in handling field data. The

inversion scheme has been tested using synthetic data to show its stability and effectiveness.
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Introduction

High-resolution imaging of electrical conductivity has
been the subject of many studies in cross-hole tomography
using electromagnetic (EM) fields (Zhou et al., 1993; Wilt
et al., 1995; Alumbaugh and Morrison, 1995; Newman,
1995; Alumbaugh and Newman, 1997). Although the theo-
retical understanding and associated field practices for cross-
hole EM methods are relatively mature, these techniques are
costly and sometimes it is difficult to find two adjacent
boreholes for cross-hole surveys. The cost can be greatly
reduced if a single-hole survey method could be developed.

The main advantage of integral equation (IE) method in
comparison with the finite difference (FD) and/or the finite
element (FE) methods, is the fast and accurate simulation of
compact three-dimensional (3-D) bodies in a layered back-
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ground (Hohmann, 1975). The FD and FE methods are suit-
able for modeling EM fields in complex structures with
large-scale conductivity variations. In principle, the IE
method can handle these models too, but the huge demand
on computer resources places a practical limit on its use.
This is because of the full matrix arising from the IE for-
mulation.

Another advantage of the IE method over the FD or FE
method is its greater suitability for inversion. IE formulation
readily contains a sensitivity matrix, which can be revised at
each inversion iteration at little expense. With FD or FE, in
contrast, the sensitivity matrix has to be recomputed at each
iteration at a cost nearly equal to that of full forward mod-
eling. The IE method, however, has to overcome severe
practical limitations imposed on the numerical size of the
anomalous domain for inversion purposes. In this direction,
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several approximate methods such as the localized nonlinear
(LN) approximation (Habashy et al., 1993) and quasi-linear
approximation (Zhdanov and Fang, 1996) have been devel-
oped recently.

In this paper an advantage of the LN approximation is
exploited with applications to single-hole inversion of EM
data. We begin our discussion with a review of the LN
approximation of IE solutions. We then consider its accuracy
for a cylindrically symmetric model and describe our inver-
sion algorithm. Finally, we demonstrate the stability and
effectiveness of the approach by inverting synthetic data.

LN approximation

Maxwell’s equations with an " time dependence,
neglecting displacement currents, are written as

V x E(r)=—iouH(r), (1)
VxH(r)=o(r)E(r)+J (r-r,), )]

where J; is the impressed current source at r,. The magnetic
permeability  is assumed to be constant and equal to that
of free space. The electrical conductivity o is heterogeneous
and it may be divided into

o(r)=0,+Ac(r), 3)

where the subscript b indicates the background. The conduc-
tivity of the background medium is assumed uniform. The
differential equation for the electric field is derived from
equations (1) and (2) as

V x Vx E(r)+iopo(r)E(r)=—iop) (r-r,), )

and the numerical solution for the electric field may be
obtained using either the FE or FD method. Alternatively,
numerical solution may be obtained using the IE method
involving the Green’s function that satisfies

VXV XGg(r-r)+iouc,Ge(r —r)=I8(r" - r,), &)

where I is the identity tensor, and the subscript E signifies
that the Green’s function translates current source J, to elec-
tric field E. Each vector component of the Green’s tensor
Gxr-r’) is the vector electric field at r due to a point source
at r’ with its current density of —(iwu)™ A/m?, polarized in
x, ¥ and z, respectively. Using equations (4) and (5), one
can derive an IE solution for the electric field as

E(r)=E,(r)~iop| Gg(r—1') - Ac(r)E(r')dv’, 6)
\'4

where E,(r) is the background electric field that would exist
in the presence of background medium only, and the term
AcE inside the integral is called the scattering current
(Hohmann, 1975).

Equation (6) is nonlinear because the electric field inside
the integral is a function of the conductivity. To obtain a
numerical solution, the anomalous body is divided into a
number of cells, and a constant electric field is assigned to
each cell. Since Raiche (1974) first formulated a volume 3-
D IE method, many numerical solutions have been presented
on this subject (Hohmann, 1988). The process involved in
the volume IE methods requires computing time propor-
tional to the number of cells used, and it quickly becomes
impractical as the size of the inhomogeneity is increased to
handle realistic problems.

For some important class of problems the complexity
associated with a full 3-D problem can be reduced to some-
thing much simpler. A model whose electrical conductivities
are cylindrically symmetric in the vicinity of a borehole is
such an example. In order to preserve the cylindrical sym-
metry in the resulting EM fields, a horizontal loop current
source or a vertical magnetic dipole may be considered in
the borehole. In this case the problem is scalar when formu-
lated using the azimuthal electric field E,, and the analo-
gous IE solution is

E(P(r)zE(pb(r)—Znia)/,t” G(r—1)AG(r)E (r')p'dp'dz’,
pe N
where

r=p+7 and r'=p'+7’
are the position vectors, and the electric field and Green’s
function are both scalar. The Green’s function is given in the
form of a Hankel transform as (p. 219, Ward and Hohmann,
1988)

oo —uplz—7|
1 re

Gg(r - r’)=-—zr j
0

Ay (Ap)T (Ap"yd A, ®)

Up

where

w=(A+iwuoy)'.
Since measurements are usually made for the magnetic
field, equation (7) is reformulated to

H (r)=H,(r)-2miop| [ G,(r-r)Ao(r)E (x)p'dp'dz,
pz

&)
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where Gp(r-r’) translates scattering currents Ac(r’)E(r’) at
r’ to the magnetic field at r.

Using equations (7) through (9), one can obtain an IE
solution by first dividing the (p, z) cross section into a num-
ber of cells, and formulate a system of equations for the
electric field using a pulse basis function. Sena and Toksoz
(1990) presented a cross-hole inversion study for permittivity
and conductivity in cylindrically symmetric medium using
high-frequency EM, and Alumbaugh and Morrison (1995)
investigated cross-hole EM tomography using an iterative
Born approximation.

Borehole access for a geophysical survey in producing
fields is very limited. For this reason, an efficient single-hole
EM imaging is considered using the LN approximation,
which offers an efficient and reasonably accurate electric
field solution without solving the full IE solution from equa-
tion (7). To do this equation (7) is first reformulated to
(Habashy et al., 1993).

E(1)=E gy(r)-2m0pE (0 | Gpir ~x)ao()p'dp'dz
pz
—2miopf[ Gyr—r)AG()E,(r') - E (r)]p'dp'dz,
pz

or

E (t)+2miopE (v) [ Gp(r —r)Ao(r)p'dp'dz
pz
=E y(r)-27iou[ [ Gp(r~r)Ac(r') [E (r') ~ E(r)]p'dp'dz’.
pz
If the electric field is continuous in the vicinity of r, the
contribution from the second integral may be small com-
pared with the background electric field. This is because
when r’ approaches r, the difference in [E r")—E4r)] is
getting smaller, so the scattering current is effectively zero at
the singular point. When r’ moves away from r, the contri-
bution is also small because the Green’s function falls off
rapidly. For the type of problem where there is only the azi-
muthal electric field, therefore, one can get a good approxi-
mation even if the second integral is neglected entirely. As
a result, one gets

E¢(r)|:1+2nia)u” Gpy(r- r’)AO'(r')p’dp'dz’] =~E ,(r),
pz

from which one obtains

E ,(r) = Y(r)E ,(r), (10)

where

-1
y(r)={1+27cia)/.t” Gglr- r’)Ao(r’)p’dp’dz'} .
pz

Substituting equation (10) into equation (9) yields an
approximate magnetic field solution

H,(r) = H,(r)

“2miop| | Gy(r-r)Ac(r )N )E ,(x)p'dp'dz’. (1)
pz

To illustrate the efficiency and usefulness of the LN
numerical solution, especially in single-hole application, let
us consider a simple model consisting of a conductive ring
about a borehole axis in a uniform whole space of 100
ohm-m resistivity. The cross section of the ring is a 3 m by
4 m rectangle as shown in Figure 1. Let us vary the trans-
mitter-receiver offset (a in Figure 1), borehole-to-conductor
distance (b in Figure 1), vertical distance between the trans-
mitter and the top of the conductor (¢ in Figure 1), and the
conductivity contrast (c»/c;) and find out how the LN
approximated vertical magnetic field compares with the
result obtained from the full FE method (Lee et al., 2002).
Unless otherwise indicated the frequency used is 100 kHz
throughout.

Figure 2 shows the comparison in secondary vertical mag-
netic fields between the FE (solid and dashed lines) and LN
(symbols) solutions for three different transmitter-receiver
separations. The center of the body is chosen as z=0, and
plots are made at the transmitter-receiver midpoint. The con-
ductivity contrast used is 10, and the borehole-to-conductor
distance is 3 m. For all three separations of 4 m, 6 m, and
8 m, the two solutions agree very well. More anomalies can

J_?

Rx o, =0.01 S/m
z

Fig. 1. A cylindrically symmetric model. The inhomogeneous
body with a cross-section of 3 m by 4 m is cylindrically symmet-
ric about the borehole in which source and receiver are inserted.
The parameters a, b, and ¢ represents the source-receiver, horizon-
tal hole-body and vertical source-body separations, respectively.
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Fig. 2. The effect of source-receiver separation on the vertical component of secondary magnetic fields. Operating frequency is 10° Hz.
The 0.1 S/m body is located in a whole space of 0.01 S/m at 3 m horizontally away from the borehole.
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Fig. 3. The effect of hole-body separation on the vertical component of secondary magnetic fields. The operating frequency is 10° Hz, the
conductivity contrast between body and background is 10, and the source-receiver separation is 4 m.

be observed in the imaginary part. The anomaly also gets
stronger for shorter source-receiver separations. At the sepa-
ration of 4 m the imaginary part of the anomaly is 2.0 x 107*
A/m, and it is about 8% of the primary field of 2.48 x 107
A/m (not shown here).

Next, we consider responses by varying the borehole-to-
conductor separation, while the conductivity contrast and
transmitter-receiver separation are fixed to 10 and 4 m,
respectively. When the separation is small, it is anticipated
that the LN approximation may not be as good, because the
rapid change in the electric field in the vicinity of the trans-
mitter is not a favorable condition for the LN approxima-
tion. Figure 3 confirms this is indeed the case. For the
separation of 1 m, one can see significant difference in the
peak values of the real part between the FE and LN solu-

tions. The difference is less in the imaginary part.

We are also interested in the quality of the LN solution
when the conductivity of the body is increased. The trans-
mitter-receiver separation, borehole-to-conductor distance,
and the vertical distance between transmitter and the top of
the conductor distance are fixed to 6 m, 3 m, and 4.5 m,
respectively. The LN approximation is very well up to the
conductivity contrast of 200 as shown in Figure 4. The
imaginary part of the LN solution starts deviating from the
FE solution beyond the conductivity contrast of 200, while
the real part still shows a good agreement.

Finally, the comparison is made for responses in fre-
quency (Figure 5). The conductivity contrast, (ransmitter-
receiver separation, and borehole-to-conductor distance are
fixed to 10, 6 m, and 3 m, respectively, and the FE and LN
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Fig. 4. The effect of conductivity contrast between body and back-
ground on the secondary magnetic fields. The operating frequency
is 10° Hz, the source-receiver separation is 6 m and the horizontal
hole-body separation is 3 m.

solutions are obtained for frequencies ranging from 200 Hz
to 80 MHz. Two solutions show a good agreement all the
way up to 2 MHz (see details on the right of Figure 5).

Inversion

Based on the encouraging results of the LN approxima-
tion, we have proceeded to implement the single-hole EM
inversion. Measurement positions are in the same borehole
as the transmitter, so the radial distance p is zero. Upon
dividing the inhomogeneity into X elements, the secondary
magnetic field at the i-th receiver position in the borehole
may be written as

103 -
104

10%

106

1F#] (Am)

107

108

10°

10— T T T T,
102 107 1o 108 106 107

Frequency (Hz)

K
H,~-2miop Y, Ao-kykE(pbk” Gylp', ;- 2)p'dp’dz,
k=1 5, (12)

where the subscript £ denotes the k-th element. The corre-
sponding Green’s function for the magnetic field may be
deduced from the electric field Green’s function (8) as

o |z -z}

1 (4 2 ’
rrr ! — AT (Ap")dA. (13)

Gy(p’, z;-7)=

For the inversion, the sensitivity of the magnetic field with
respect to the change in conductivity can be easily obtained
from equation (12). Taking derivative of the data with
respect to the j-th conductivity parameter and neglecting the
dependence of ¥ on Aoj, the sensitivity becomes

oHy :

3o = ~27i a)mg.Eq,bj” Gulp', z,-2)p’dp’d?’, (14)
SJ'

which can be easily evaluated by integrating over the j-th

element.

The inversion procedure starts with the data misfit
W [H(o)-H,]I>, where the subscript d denotes data. The
data weighting matrix W, is used to give relative weights to
individual data. If a perturbation 8o is allowed to the con-
ductivity, the misfit takes a form W [H(c + do)-H ]I, and
the total objective functional may be written as

¢= W H(0 + 60)-H,]IP+UIW ;6017 (15)

where the second term on the right-hand side is added to
impose a smoothness constraint, and W, is a weighting
matrix and A is the Lagrange multiplier that controls the
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Fig. 5. The effect of operation frequency on the secondary magnetic fields. The source-receiver separation is 6 m. The 0.1 S/m body is
located in a whole space of 0.01 S/m at 3 m horizontally away from the borehole.
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Fig. 6. Inversion of synthetic model. The model (left) used to calculate synthetic data for inversion test consists of two bodies, of 1 S/m
and 0.01 S/m, located in a whole-space of 0.1 S/m. An image of two conductors reconstructed from the synthetic data after 8th iteration.

trade-off between data misfit and parameter smoothness.
Expanding the misfit in §o using the Taylor series, discard-
ing terms higher than the square term, and letting the vari-
ation of the functional with respect to 8o equal to zero, one
can obtain a linear system of equations for the perturbation

60 as
F'WIW I+ 2WIw ) so=—3"WiW (H(0)-H,}.  (16)

where the superscript T indicates matrix transpose, and the
entries of Jacobian matrix J are the sensitivity functions
given in equation (14).

The stability of the inversion is largely controlled by
requiring the conductivity to vary smoothly. Larger values of
A result in smooth and stable solutions at the expense of
resolution. It even allows for the solution of grossty under-
determined problems (Tikhonov and Arsenin, 1977). In this
single-hole inversion study, the parameter A is progressively
selected in the inversion process. The selection procedure
starts with executing a given number of inversions using nl
different multipliers that are spaced appropriately. The same
Jacobian is used at this step. As a result nl updated param-
eter sets are produced, followed by nl forward model calcu-
lations resulting in n/ data misfits. Among these, the model
and parameter A giving the lowest data misfit are chosen for
optimum ones. In this selection scheme, the IE modeling is
quite attractive in speed because Green’s functions, the most

time consuming part in IE methods, are repeatedly re-usable
throughout the selection procedure.

The conductivity model shown on the left of Figure 6 is
chosen to evaluate the performance of extended Born inver-
sion using the LN approximation. The model consists of
two cylindrically symmetric bodies, one conductive (1 S/m)
and the other resistive (0.01 S/m), in a whole space of 0.1
S/m. A FE scheme (Lee et al., 2002) is used to generate
synthetic data. The accuracy of the FE scheme is estimated
as a level of less than 1%. Using a vertical magnetic dipole
as a source, vertical magnetic fields are computed at five
source-receiver offsets of 4 m through 8 m at three frequen-
cies of 12 kHz, 24 kHz and 42 kHz. Using 3-digit synthetic
data generated by the FE method, the inversion is started
with an initial model of 0.25 S/m uniform whole space. In
this test, n/ =3 is used in each iteration to select parameter
update and Lagrange multiplier.

After 6 iterations, the two bodies are clearly reconstructed
as shown on the right of Figure 6. The recovered conduc-
tivity is found to be nearly the same in the conductive body
but is overestimated in the resistive body. The inversion pro-
cess is quite stable as shown in Figure 7, where the rms
misfit decreases from the initial guess of 0.478 (not shown
in Figure 7) to under 0.01 after 6 iterations. The rms misfit
of 0.01 is assumed to be a target misfit level because the
error level in the synthetic responses is estimated to be
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Fig. 7. Convergence in rms misfit for the synthetic model inver-
sion.

about 1%. Also, the smoothing parameter varies significantly
during the inversion process. This means it is difficult to
determine the parameter a priori.

Conclusions

The extended Born or LN approximation of IE solution
has been applied to inverting single-hole EM data using a
cylindrically symmetric model. The extended Born approxi-
mation is less accurate than a full solution but much supe-
rior to the simple Born approximation. Moreover, when
applied to the cylindrically symmetric model with a vertical
magnetic dipole source, the accuracy of LN approximation
is greatly improved because electric fields are scalar and
continuous everywhere. One of the most important steps in
the inversion is the selection of a proper regularization
parameter for stability. The LN solution provides an efficient
means for selecting an optimum regularization parameter,
because Green’s functions, the most time consuming part in
IE methods, are repeatedly re-usable at each iteration. In
addition, the IE formulation readily contains a sensitivity
matrix, which can be revised at each iteration at little
expense. In this paper, a fast inversion scheme has been
developed to analyze EM fields obtained in a single-hole
environment, and tested to show its stability and effective-
ness using synthetic data.
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