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Abstract The solutions of a homogeneous system in state space form
T = Az
are to the form z = e4*xp and the solutions of an inhomogeneous system
& = Az(t) + f(t)

are to the form z = etz + f e4(t=7) f(7)dr. In this note we show that the
solution of descriptor systems under some conditions exists, and is unique,
moreover it is interesting to know the solutions of descriptor system are
schematically like the solutions as in the state-space form. Also we will give
some algorithms to compute these solutions.

1. Introduction

We study a linear multivariable inhomogeneous system in de-
scriptor form:

Ei = Axz(t) + f(t), z(0) = z (1.1)

where, x and f are functions of time with values in X = R" and
E and A are n x n real, constant matrices. Here we have followed
the works of Wonham[2], Fletcher and Aasaraai[l].

In first step we study the homogeneous system:

Ei = Ax(t), z(0) = z¢ (1.2)
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DEFINITION 1.1. A subspace V will be said to be (A, F)-invari-
ant if AV C EV.

LEMMA 1.1. Suppose x(t) satisfies (1.2) and let V be the small-
est subspace of X such that x(t) € V for allt > 0. Then V is an
(A, E)-invariant subspace, i.e. AV C EV. [1]

LEMMA 1.2. Define T = I(A,E;X) as the class of (A, E)-
invariant subspaces of X'. Then T is closed under the operation of
subspace addition, and T contains a supremal element V* = sup Z.

Proof. The closedness of Z is obvious, and since X' is finite-
dimensional there is an element V* € 7 of greatest dimension. If
V € T we have that V + V* € 7 and so

dim(V*) > dim(V + V") > dim(V*);
that is, V* = V + V*, hence, V € V* and so V* is supremal.

2. The existence of solutions of homogeneous systems

THEOREM 2.1. Let V* = supZ. Then:

(i) There exists a linear transformation X — X with matrix L
such that LYV* C V* and ‘

Av = FELv forve V" (2.1)

(ii) The homogeneous system (1.2) has a solution if and only if
z(0) € V*. Moreover any solution z(t) lies in V* for all't > 0.

(iii) There is a unique solution of (1.2) for o € V* if and only
if kerENV* =0.

Then a solution of (1.2) for xg € V* is

z(t) = et (2.2)

Proof. To establish the existence of L we let vy, ..., v, be a basis
of V*. Then, since AV* C EV*, we must have Av; = Fw; where
w; € V(i = 1,...,7). Define L by Lv; = w;(: = 1,...,r) and
define L arbitrarily on the remainder of a basis of A'. Clearly
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now LV* C V* moreover eXtV* C V*. This completes the proof
of part (i) and with it the "if" part of (if). Conversely, suppose
x(t) satisfies (1.2) with z(t) € X for all t > 0. Let V be the
smallest subspace of A" such that x(t) € V for all t > 0: we show
that ¥V € T. If v € V then v = z(t1) + x(t2) + ...x(tx) for some
ti,ta,....tx and so

Av = E/‘CL(tl) + El‘(fg) + E.l(fk)

Thus, to show that AV C EV. it is sufficient to prove that z(t) € V
for all t > 0. But

z(t+h) — xz(t)
h

z(t) = ’111_{&) (2.3)
(with A > 0 if t = 0) where, by definition, =(t + h),z(t) € V.
Moreover, V is closed since A is finite-dimensional, so proceeding
to the limit in (2.3) does not leave V. Thus z(t) € V* for all
t > 0so z(0) € V* as required. To prove part (iiz) suppose
kerENV* = 0. Then the equation Ez = Az can be written

E(i - Lz) -0

and moreover £ — Lz € V* for all £ > 0. Thus (1.2) becomes
equivalent to
T =Lx

Ltro, and uniqueness of solutions

which has the solution z(t) = e
is obvious.
Conversely if ker ENV* # 0 let g(¢) be any function such that

g(t) € kerENV* for all t > 0. Then

t

z(t) = eFlay + / el =T g(r)dr

JO

satisfies, (1.2), whatever the function g(t).
This completes the proof of theorem 2.1.
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THEOREM 2.2. Let V* = supZ. Suppose zo € V* and ft) e
EV* for allt > 0. Then

t ,
z(t) = eFtag +/ et g(r)dr (2.4)
0
where f(t) = Eg(t); g(t) € V*, and L is defined in theorem 2.1.
Proof. 1f we define x(t) by (2.4) we have z(0) = zo and
Bt — Az — f(t) = (EL — A)z + Eg(t) — f(t) = 0

since () € V* and so & € V*, therefore (EL — A)z = 0,

3. An algorithm to find V*

We are seeking an algorithm to find
V* = sup{V: AV C EV;V C &},

THEOREM 3.1. Let matrices A, E, be n x n. Define sequence
V# according to

Vo= x,
V= A"HEV* Y, u=1,2,..

where A™'U = {z € X : Ax € U},
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Then V* C V¥~ !, and for some k < n
Ve = P*

forvu > k.
Proof. Clearly VY<V° and if V* C V#~1, then

ViHl = A"H(EV)
C ATHEVFTY)
= PH.

So the sequence V* is nonincreasing, thus for some k < n, V* =
VE(u > k). Now, V € V* if and only if

YV C A™YEY) (3.1)
From (3.1), V C V% and if V¥ C V¥~ 1,
VCAYEV)C AT EVHT) = V-,

Therefore, ¥ C V¥ = V*, and as V was arbitrary the result fol-
lows.

The following method by using theorem 3.1 tells us how can we
find V*.

We need the following terminology. If M, X, Y are matrices, with
M given, a maximal solution of the equation M X = 0 (resp.
Y M = 0)means a solution X (resp. Y} of maximal rank, having
linearly independent columns(resp. row). With reference to the-
orem 3.1, let V* = I'mV,,, with V4 = I{the identity matrix). Let
W, be a maximal solution of

Wu(EV, 1) =0, p=12,..
and obtain V), as a maximal solution of

(W, AV, =0, u=12..

At each stage we have V* C y#-1 je.(as a check),
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rank(V,_1,V,) = rankV,_;:

and the stoping rule is V#* = V1 je,

I A e S
rankV, = rankV,_;.

Then V* = Y+,
EXAMPLE.
1 0 1 1 1 2
E=10 1 1], A=10 1 -1
1 0 1 1.1 1
Then we get

In second step we get

10
Wo=(10 -1), V=W=|01

0 0

<o) )

Now following proof of the first part of theorem 2.1 we get

1 10
L=101 0
0 0 0

Hence

and then
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Since
(41
1”* [ /"} . VCY. /'f‘E \R
0
we get
(¥
EV' = A).Ya.BeR
Y
Let f(t) as
et
f(t) = | 2¢t
(ft
(i’,t
therefore f(t) € EV*, then we have g(t) = | 2¢t | € V*
' 0
1
By assuming x¢g = | 2 |, then by (2.4) we get
0
(1+ 3t +t2)et
z(t) = (2 + 2t)e
0
1
We note that kerE = I'm -1 . S0 kerENV* = 0, then
-1

the solution is unique.
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