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Abstract A lé-starcampact space has ome of the most curious prop-
erties among the spaces of starcompactness. It is not too far away from
countably compact spaces and may be considered as the first candidate for
extending theorems about countably compact spaces. Unfortunately, 1%-
starcompactness is not so easy to be recognized as 2-starcompactuess which
will follow from countable pracompactness. We investigate some properties
around 1%-starcompact spaces.

1. Introduction

The study of star-covering properties of a topological space
could be started around 1970s by W. Fleischman [5] or even ear-
lier. A systematic study on themn was done by van Douwen et al in
1991 [2]. One of recent and systematic investigation in this area
is Matveev’s survey [8]. '

In this paper, we investigate some properties and their inter-
relationships around 1%~starcmupact spaces. More precisely. we
construct an example of a first-countable normal P-starcompact,
that is neither K- starcompact nor n%-stﬂrcompact. In Section 3.
we give a proof of a very useful theorem that every countably pra-
compact space is 1-cl-starcompact (and hence 2-starcompact). We
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study countably pracompact spaces and prove theorems related to
right separated spaces and theorems on spaces with property wD.
We give an example of a countably pracompact space which is not
countably compact. We also introduce an example of countably
pracompact space which is not lé—star(toulpact.

We shall start with some basic notations and terminology which
will be used throughout this paper. As far as topological con-
cepts are concerned, we follow [4]. Let X be a space and let
U be a collection of subsets of X. For any non-empty A C X,
let St(A,U) = StH A U) = H{U e U : ANU # 0} and define
St (A, U) = St(St™(A.U),U) for n € N. St*"({z},U) is sim-
ply written as St™(z,i{). For each n € N, a space X is called
n-starcompact (resp. nj-starcompact) (8] provided that for ev-
ery open cover U of X there is a finite subset F' of X (resp.
a finite subcollection V of U) such that St™(F.U) = X (resp.
St™(UV,U) = X).

Let Ny/3 = {n—1/2:n € N} and N = NUN, ;. Then for each
n € N, every n-starcompact space is n%-starcompact.

For a family U of sets in a space X and k € N we denote

. {StF(z,U):x € X} ifkeN
T {StVAULU) U e U if k€ Ny

DEFINITION 1. A space X is k-starcompact (k € f\vl) if the
following condition holds
(S5tk) for every open cover U of X the cover U* has a finite sub-
cover,
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A space X is w-starcompact if the following condition holds
(St¥) for every open cover U of X the cover U* has a finite sub-
cover for some k € N.

We use the terminology in [8] which is different from the one
used in [2] where what we call k3-starcompactness was called &-
starcompactness and what we call k-starcompactness was called
strong k-starcompactness. The reason for this is to reserve the
words “weakly” and “strongly” for introducing other properties.

Many examples and properties of k-starcompact spaces were
discovered in [2] and [7]. It is known that 1-starcompactness is
equivalent to countable compactness for Hausdorff spaces. In the
class of regular spaces, every k-starcompact space is 2—;—-smrcom-
pact if £ > 3 and k € N. Furthermore. 2%—starconlpactness 18
equivalent to pseudocompactness for Tychonoff spaces. See Dia-
gram 2 below for their implications.

—~

DEFINITION 2. A space X is k-cl-starcompact (k € N) if the
following condition holds
(StF) For every open cover U of X the cover U* has a finite
subfamily the union of which is dense in X.

The next two conditions can be dctined only for & € N.

DEFINITION 3. A space X is weakly k-starcompact if the fol-
lowing condition holds
(wStF) for every open cover U of X there exists a finite subset A C
X such that for every open neighborhood O of A, St"(O.U) = X.

A space X is weakly-k-cl-starcompact if the following condi-
tion holds
(zz)Stfjl) for every open cover I of X there exists a finite subset
A C X such that for any open neighborhood O of 4 St*(0.U) =
X.
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PROPOSITION 1.1. [8] The following implications hold for anv
X and k € N without assumption of any axiom of separation.

o (SHF) o (wSH) o (SP2) o (SR o (S14)

o (StR) = (wSE) = (SR o (SR o

Diagram 1

countably compact
|t
1-star-compact
14-star-compact

2-star-compact

2} -star-compact DFCC
1
n-star-compact
1.
n §v-btar4-compa‘ct regular

n+1-star-compact
'
w-star-compact

| Tm,

pseudocompact

Diagram 2

A space X has the discrete finite chain condition (henceforth
abbreviated DFCC) provided every discrete family of nonempty
open sets is finite.

THEOREM 1.1. [8] The following conditions are equivalent in
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the class of regular spaces:

1. (DFCC).

2. (St21),

3. (St*) for any k > 23.

4. (St%),

5. St'7).

6. (Stk) for any k > 11,

7. (wSt’“) forany k€ N, k > 3,
8. (wStk) for any k € N, k > 2.

In the class of Tychonoff spaces all these conditions are equiv-
alent to pseudocompactness.

2. 1i-starcompact spaces

A 1%~starcompact space has one of the most curious proper-
ties among the spaces of starcompactness. It is not too far away
from countably compact spaces and may be considered as the
first candidate for extending theorems about countably compact
spaces. While, it has some features of pseudocompactness. Un-
fortunately, 1%—starcompactness is not so easy to be recognized as
2-starcompactness which will follow from countable pracompact-
ness (see below). We introduce a couple of well- known theorems
providing that a given space is not 1%-st«arcompact.

THEOREM 2.1. [2] If a regular space X contains a closed dis-
crete subspace Y such that |Y| = w(X) > w, then X is not
11-starcompact. :

For example, the usual space R is not lé-starcompavt since it is
clearly a regular space which has N as a closed discrete subspace.
It is, in fact, not n%-&;tarcompn('t for any n € w since it is not
pseudocompact.

For any space (X.7T), w(X) = min{|B} : B is a base for X} is
called the weight of X. The extent ¢(X) of X is defined as follows:
e(X) = sup{|D| : D C X. D is closed and discrete }. Clearly.
tha extent is a generalization of Lindelof degree. For any space

X. e(X) < w(X). The above theorem shows us that ¢(X) <

w(X) for every regular 1-~-tan ompact space X. In particular.
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a “very good” space D" \ {p}, where p is arbitrary point of D*
and s is an infinite cardinal number, is 2-starcompact but not
1 ” . tood o DF . N\ ) — g
1~2-~s.t.a1(‘0rnpac.t.. Im_le.e,fl. e(D"\ {p})rm w(D%\ {p}) = k. -
Since both inequalities w(X) > | X| and w(X) < |X| are possi-
ble, the next theorem is independent of the previous one.

THEOREM 2.2. [8] If a regular space X contains a closed dis-
crete subspace Y such that |Y| = |X| > w, then X is not 13-
starcompact.

However, for every cardinal s there exists a Tychonoff 1%~
starcompact space X such that e(X) = x (see Theorem 36 in
[8]). Maybe “discrete” in the last two theorems can be replaced
by a weaker condition.

Big extent is not a necessary condition for not being 1%-star—
compact: there is a 2-starcompact space of countable extent which
is not 1%—starcompact constructed by means of the “Noble plank”
(see Example 3 in [8]). Other examples of “good” pseudocompact
spaces of countable extent which are not 1%~starcon‘1pact can ap-
pear if the answer to the following question will be negative.

QUESTION 1[QUESTION 2 IN [8]]. Suppose X is the union of
countably many dense, countably compact (in itself) subspaces.
Must X be 13-starcompact?

Let X = [[,cs Xs be the product space and p be a fixed point
of X. The subspace :

Z(p)‘—:{;‘EEEX:HSES::Es # ps}l < w}

of X is called a ) _-product of spaces {X, : s € S} (about p).
Observe that a Y _-product of spaces {X,},es is a proper sub-
space of the product space [],.¢ X, if and only if uncountably
many spaces X, contain at least two elements. Such ¥ -products
are called proper.
In particular, let X be the union of countably many distinct
Y-products in D Is X lé-st,armmpa(:t?

Ikenaga and Tani [6] call a space X K-starcompact provided
that for every open cover U, there is a compact subspace K C X
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such that St(K.U) = X. It is clear that

1
(starcompact) = (K-starcompact) = (1 5—sta,r(':ompact).

Fa

Also, it is clear that K-starcompactness is a 1%~starcmnpa‘vtue:»;s»
type property.

DEFINITION 4. A space X is called K-starcompact (resp. £-
starcompact, P-starcompact, M-starcompact) if for every open
cover U of X there is a compact (resp. Lindelof, paracompact.
metacompact) subspace A of X such that St(A,U) = X.

The following diagram gives us obvious implications between
the concepts above.

I-starcompact

/ \\\

K-starcompact— P-starcompact «—- {-starcompact

| |

1 %-starcompact M-starcompact

Diagram 3

EXAMPLE 2.1. A first-countable normal P-starcompact that
is neither K- starcompact nor n%-starcompa‘ct.

Proof. Let R be the set of real numbers and A a countable set
disjoint from R. Write 4 = {a,,, : m € w}. Let X = AUR and
topologize X as follows;

For each m € w, let By, = {{an}U(p.q) :m—-1<p<m<
g <m+1and p g€ Q}. and let Bg be the usual base for R. Let
Jx be the topology on X obtained from {B,, : m € w} and Bs.

Observe that R is a paracompact subspace of (X.Jy), and
for every open cover U of X. St(R.U) = X. Thus X is P-
starcompact. Moreover, X is first-countable and normal.

Claim. X is not K-starcompact. Indeed. for each m € w. let
Un ={am}U(m—1.—m+1)and Vi, = (—m — 1. =+ 1). Then
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clearlv Y = {U,, : m € wtU{Vy, : m € w} is an open cover of X.
Let K be an arbitrary compact subspace of X. The open cover Y
defined witnesses that St(K,U) # X, so X is not K-starcompact.
Furthermore, with this open cover, we can see that X is not n-%r
starcompact for every n € w\1, and thus is not w- starcompact.

3. Countably pracompact spaces

Recall that a space X is countably compact if every infinite sub-
set of X has a limit point. A subspace Y of a space X is relatively
countably compact (or weakly countably compact or conditionally
compact) if every infinite subset of Y has a limit point in X. Re-
call that a space X has the discrete finite chain condition (hence-
forth abbreviated DFCC) provided that every discrete family of
nonempty open sets is finite.

DEFINITION 5. A space X is countably pracompact if it has a
dense subspace Y such that Y is relatively countably compact.

ProprOSITION 3.1. (1) Every countably compact space is count-
ably pracompact.
(2) Every countably pracompact space is DFCC.

Proof. (1) LetX be a countably compact space. Choose Y =
X. Then Y is dense in X and Y is relatively countably compuct
being Y countably compact. (2) Suppose X is not DFCC. Then
there exists a countably infinite discrete open collection P = {D,, :
n € w}. Let D C X be dense. We claim that D is not relatively
countably compact, i.e.. there exists a countably infinite subset 4
of D such that A has no limit point. Since D is dense and each
D, is open, DN D,, # . Choose one z, € D D,, for each n = w.
Let 4 = {x, . n € w}. Then 4 is a countably infinite subset of
D. It is easy to check that A has no limit point.

The following theorem is a very useful one which is given by
Theorem 15 in [8] without proof. We give here a proof of this
theorem.

THEOREM 3.1. Every countably pracompact space is 1-cl-star-
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compact (and hence 2-starcompact).

Proof. Suppose X is countably pracompact. Let Y € X he a
dense subspace which is relatively countably compact in X. By
way of contradiction. we assume that X is not 1-cl-starcompact.
Then there exists an open cover U of X such that the cover ' =
{St(z,U) : € X} does not have a finite subfamily whose union
is dense in X, i.e., for any finite set A = {xg.21.... .2,} C X,

St(A,U) = St(zo, U) U St(z1. U)U .. . USt{wx,. U) # X (%)

Since Y is dense in X, Y \ St(A,U) # 0 for any finite ACY C X
since if Y = St(A,U) for some finite A C Y, then X =Y =
St(A,U), contradicting (*). Then, by induction, we can construct
an infinite sequence S = {p, : n € w} with p, € Y and p, ¢
St({pm : m < n},U) for each n € w. It is easy to see that S is
discrete. Therefore S is an infinite subset of ¥ which does not
have a limit point in X, i.e., Y is not relatively compact in X.
This is a contradiction.

The following is an example of a countably pracompact space
which is not countably compact.

ExAMPLE 3.1. Consider a maximal almost disjoint family C =
{As : s € §} of infinite subsets of w. We wmay assuine that SNw ==
0. Define a topology on the set X = S U w as follows:

All points of w are isolated in X, and an arbitrary basic neigh-
borhood of any point s € S consists of the point s and all but
finitely many points of A,.

Then the space X is Tychonoff since X has a clopen base, the
set w is both countably compact and dense in X. Therefore X is
countably pracompact. but X is not countably compact since §
is an infinite closed discrete subspace of X.

In addition, the space X above is locally coinpact locally metriz-
able Moore space.

The following example is known in [8] as a mini-2- starcompact
space. We introduce it here as an example of countably pracom-
pact space which is not l:,f—-starcmm)act.
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ExAMPLE 3.2. Let C be a maximal almost disjoint family of
infinite subsets of w. Denote A the family of all infinite subsets of
the elements of C. For every A € A choose a point x4 € fSw\w s0
that z4 € A and x4 # 4 whenever 4 # A’. Denote ¥ = {14 :
A€ A} and X = Y Uw. Let Ty be the topology on X inherited
from fw. Now we define a finer topology 7 on X declaring the
basic open neighborhood of z 4 to take form U\(Y\{x4}). where
U is a neighborhood of x4 in 7y.

The space (X, T) is countably pracompact because w is dense
and relatively countably compact in (X, 7T}. Indeed, let B be an
infinite subset of B. Then by maximality of C, there exists ¢’ € C
such that |[BNC| = w. So BNC € A. Then zpgnc is a limit point
of B in (X, T). It is shown in [8] that for any infinite subspace Z
of (X,T), Z is not 13-starcompact. In particular, (X, T) is not
11

ProprosiTION 3.2. The closure of the set of isolated points in
a DFCC space is countably pracompact.

Proof. Let X be a DFCC space and A = {z € X : z is an iso-
lated points in X'}. Then A is countably pracompact; clearly, A
is a dense subspace of A. '

We claim that A is relatively countably compact in A. Let
B C A be any subset. Then B = {{z} : z € B} is a discrete
collection of non-empty open subsets of X. Since X is DFCC, B
must be finite and so B is finite. Therefore B has a limit point in
A.

A space X is right(left)-separated if and only if there exists a
well-ordering < on X such that every initial segment (oc,z] is
open (closed), i.e., {To : @ < a} is open (closed) for each «.

THEOREM 3.2. If X is right-separated and A is a set of all
isolated points in X, then A is dense in X, i.e., A= X.

Proof. Let U C X be a non-empty open subset. We want to
show that ANU # 0, i.e., U has an isolated point. Let o =
min{3 : 23 € U}. Then {25 : 3 < o+ 1} NU = {x,} is open.
Thus 2, is an isolated point of U.
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THEOREM 3.3. A DFCC, right-separated space is countably
pracompact.

Proof. Tt follows from Proposition 3.2 and Theorem 3.2

In general, DFCC does not imply countable pracompactness
().

A space is called pseudo-normal if every countable closed subset
has arbitrary small closed neighborhoods. A space is said to have
property D if every countable closed discrete set has arbitrary
small closed neighborhoods, and is said to have property wD {for
weak D) if every infinite closed discrete set has an infinite subset
which has arbitrary small closed neighborhoods. Clearly.

normal = pseudo-normal == property D = property wD.

The following proposition ([3]) is frequently useful when one
works with property D or wD.

PROPOSITION 3.3. The following conditions on a countable
closed discrete set D in a space X are equivalent:

(1) D has arbitrary small closed neighborhoods
(2) there is an indexed discrete open family {U, . x € D} in
X satisfying x € U, for every x € D.

Recall that countably compact = countably pracompact ==
DFCC., and that every right separated DFCC space is countably
pracompact.

PROPOSITION 3.4. Every DFCC space with property wD is
countably compact.

Proof. Suppose X is not countably compact and has property
wD. Then there exists an infinite closed discrete subset 4 ¢ X.
Also, there exists an infinite subset B C A which has arbitrary
small closed neighborhoods. By Proposition 3.3. there exists an
indexed discrete open family & = {U, : x € B} in X satisfymg
for all z € Bx € U,. Since U is infinite, X is not DFCC.
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