DOI QR코드

DOI QR Code

Expression and Characterization of β-1,4-Galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae

  • Park, Jae-Eun (Research Center for Bio-Medicinal Resources and Division of Life Science, Pai Chai University) ;
  • Lee, Ki-Young (Animal Cell and Medical Glycobiology Laboratory, Cell Biology Division, Korea Research Institute of Bioscience and Biotechnology) ;
  • Do, Su-Il (Animal Cell and Medical Glycobiology Laboratory, Cell Biology Division, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Soo (Research Center for Bio-Medicinal Resources and Division of Life Science, Pai Chai University)
  • Published : 2002.05.31

Abstract

The lgtB genes that encode $\beta$-1,4-galactosyltransferases from Neisseria meningitidis ATCC 13102 and gonorrhoeae ATCC 31151 were isolated by a polymerase chain reaction using the pfu DNA polymerase. They were expressed under the control of lac and T7 promoters in Escherichia coli M15 and BL21 (DE3). Although the genes were efficiently expressed in E. coli M15 at $37^{\circ}C$ (33 kDa), most of the $\beta$-1,4-galactosyltransferases that were produced were insoluble and proteolysed into enzymatically inactive polypeptides that lacked C-terminal residues (29.5 kDa and 28 kDa) during the purification steps. When the temperature of the cell growth was lowered to $25^{\circ}C$, however, the solubility of the $\beta$-1,4-galactosyltransferases increased substantially. A stable N-terminal his-tagged recombinant enzyme preparation could be achieved with E. coli BL21 (DE3) that expressed lgtB. Therefore, the cloned $\beta$-1,4-galactosyltransferases were expressed under the control of the T7 promoter in E. coli BL21 (DE3), mostly to the soluble form at $25^{\circ}C$. The proteins were easily purified to homogeneity by column chromatography using Ni-NTA resin, and were found to be active. The galactosyltransferases exhibited pH optimum at 6.5-7.0, and had an essential requirement for the $Mn^{+2}$ ions for its action. The $Mg^{+2}$ and $Ca{+2}$ ions showed about half of the galactosyltransferase activities with the $Mn^{+2}$ ion. In the presence of the $Fe^{+2}$ ion, partial activation was observed with the $\beta$-1,4-galactosyltransferase from N. meningitidis(64% of the enzyme activity with the $Mn^{+2}$$Ni^{+2}$, $Zn^{+2}$, and $Cu^{+2}$ ions could not activate the $\beta$-1,4-galactosyltransferase activity. The inhibited enzyme activity with the $Ni^{+2}$ ion was partially recovered with the $Mn^{+2}$$Fe^{+2}$, $Zn^{+2}$, and $Cu^{+2}$ ions, the $Mn^{+2}$$\beta$-1,4-galactosyltransferase activity was 1.5-fold stimulated with the non-ionic detergent Triton X-100 (0.1-5%).

Keywords

References

  1. Appert, H. E., Rutherfold, T. J., Tarr, G.E., Wiest, J. G., Thomford, N. R. and McCorquodale, D. J. (1986) Isolation of cDNA coding for human galactosyltrsnsferase. Biochem. Biophys. Res. Commun. 139, 163-168. https://doi.org/10.1016/S0006-291X(86)80094-8
  2. Borsig, L., Berger, E. G. and Malissard, M. (1997) Expression and purification of his-tagged $\beta$-1,4-galactosyltransferase in yeast and in COS cells. Biochem. Biophys. Res. Commun. 240, 586-589. https://doi.org/10.1006/bbrc.1997.7706
  3. Chatterjee, S. K. (1991) Molecular cloning of human $\beta$1,4-galactosyltransferase and expression of catalytic activity of the fusion protein in Escherichia coli. Int. J. Biochem. 23, 695-702. https://doi.org/10.1016/0020-711X(91)90040-T
  4. D'Agostaro, G., Bandiak, B. and Tropak, M. (1989) Cloning of cDNA encoding the membrane-bound form of bovine $\beta$-1,4- galactosyltransferase. Eur. J. Biochem. 183, 211-217. https://doi.org/10.1111/j.1432-1033.1989.tb14915.x
  5. Duggleby, R. G., Kartikasari, A. E. R., Wunsch, R. M., Lee, Y-T., Kil, M-W., Shin, J-Y. and Chang, S-I. (2000) Expression in Escherichia coli of a putative human acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33, 195-201.
  6. Frasch, C. E. (1987) Development of meningococcal serotyping; in Evolution of Meningococcal Disease, Vedros, N. A. (ed.), pp. 39-55, CRC Press, Boca Raton, Florida.
  7. Gijsen, H. J. M., Qiao, L., Fitz, W. and Wong, C. H. (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem. Rev. 96, 443-473. https://doi.org/10.1021/cr950031q
  8. Koh, E., Shim, K., Kim, H-K, Park, K., Lee, S., Kim, J. D., Yoo, S. D., Chi, S. C. and Hong, S. (2001) Cloning, expression, and characterization of protein carboxyl O-methyltransferase from porcine brain. J. Biochem. Mol. Biol. 34, 559-565.
  9. Kim, K-S., Kim, C-H., Shin, D-Y. and Lee, Y-C. (1997) Molecular cloning and expression of cDNAs encoding mouse gal$\beta$1,3(4)GlcNAc $\alpha$2,3-sialyltransferase (mST3 Gal III) and gal$\beta$1,4(3) GlcNAc $\alpha$2,3-sialyltransferase (mST3 Gal IV). J. Biochem. Mol. Biol. 30, 95-100.
  10. Krezdorn, C. H., Watzele, G., Kleene, R. B., Ivanov, S. X. and Berger, E. G. (1993) Purification and characterization of recombinant human $\beta$1-4 galactosyltransferase expressed in Saccharomyces cerevisiae. Eur. J. Biochem. 212, 113-120. https://doi.org/10.1111/j.1432-1033.1993.tb17640.x
  11. High, N. J., Deadman, M. E. and Moxon, E. R. (1993) The role of a repetitive DNA motif (5`-CAAT-3`) in the variable expression of the Haemophilus influenzae lipopolysaccharide epitope alpha Gal($\beta$1-4)Gal. Mol. Microbiol. 9, 1275-1282. https://doi.org/10.1111/j.1365-2958.1993.tb01257.x
  12. Ichikawa, Y., Look, G. C. and Wong, C. H. (1992) Enzyme-catalyzed oligosaccharide synthesis. Anal. Biochem. 202, 215-238. https://doi.org/10.1016/0003-2697(92)90099-S
  13. Jennings, M. P., Hood, D. W., Virji, R.A. and Moxon, E. R. (1995) Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol. Microbiol. 18, 729-740. https://doi.org/10.1111/j.1365-2958.1995.mmi_18040729.x
  14. Karlsson, K. A. (1991) Glycobiology: a growing field for drug design. Trends Pharmacol. Sci. 12, 265-272. https://doi.org/10.1016/0165-6147(91)90568-D
  15. Kleene, R., Krezdorn, C. H., Watzele, G., Meyhack, B., Herrmann, G. F., Wandrey, C. and Berger, E. G. (1994) Expression of soluble active human $\beta$-1,4-galactosyltransferase in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 201, 160-167. https://doi.org/10.1006/bbrc.1994.1683
  16. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  17. Masri, K. A., Appert, H. E. and Fukuda, M. N. (1988) Identification of the full-length coding for human galactosyltransferase. Biochem. Biophys. Res. Commun. 157, 657-663. https://doi.org/10.1016/S0006-291X(88)80300-0
  18. Nakazawa, K., Ando, T., Kimula, T. and Narimatsu, H. (1988) Cloning and sequencing of a full-length cDNA of mouse N-acetylglucosamine ($\beta$1-4)galactosytransferase. J. Biochem. 104, 165-168. https://doi.org/10.1093/oxfordjournals.jbchem.a122434
  19. Nakazwa, K., Furukawa, K., Narimatsu, H. and Kobata, A. (1993) Kinetic study of human $\beta$-1,4-galactosyltransferase expressed in E. coli. J. Biochem. 113, 747-753. https://doi.org/10.1093/oxfordjournals.jbchem.a124115
  20. Narimatsu, H., Sinha, S., Brew, K., Okayama, H. and Qasba, P. K. (1986) Cloning and sequencing of cDNA of bovine N-acetyl glucosamine ($\beta$1-4)galactosyltransferase. Proc. Natl. Acad. Sci. USA 83, 4720-4724. https://doi.org/10.1073/pnas.83.13.4720
  21. Nguyen, T. T., Hinton, D. A. and Shur, B. D. (1994) Expressing murine beta 1,4-galactosyltransferase in HeLa cells produces a cell surface galactosyltransferase-dependent phenotype. J. Biol. Chem. 269, 28000-28009.
  22. Nomura, T., Takizawa, M., Aoki, J., Arai, H., Inoue, K., Wakisaka, E., Yoshizuka, N., Imokawa, G., Dohmae, N., Takio, K., Hattori, M. and Matsuo, N. (1998) Purification, cDNA cloning, and expression of UDP-Gal:glucosylceramide $\beta$-1,4-galactosyltransferase from rat brain. J. Biol. Chem. 273, 13570-13577. https://doi.org/10.1074/jbc.273.22.13570
  23. Oubihi, M., Oshima, K., Aoki, N., Kobayashi, K., Kitajima, K. and Matsuda, T. (2000) An ELISA-based assay for detergent-solubilized cellular $\beta$-1,4-galactosyltransferase activity. Biosci. Biotechnol. Biochem. 64, 785-792. https://doi.org/10.1271/bbb.64.785
  24. Potter, M. D., and Lo, R. Y. (1995) Cloning and characterization of a gene from Pasteurella haemolytica A1 involved in lipopolysaccharide biosynthesis. FEMS Microbiol. Lett. 129, 75-81.
  25. Ram, B. P. and Munjal, D. D. (1985) Galactosyltransferases: physical, chemical, and biological aspects. CRC Crit. Rev. Biochem. 17, 257-311. https://doi.org/10.3109/10409238509113606
  26. Roytrakul, S., Eurwilaichitr, L., Suprasongsin, C. and Panyim, S. (2001) A rapid and simple method for construction and expression of a synthetic human growth hormone gene in Escherichia coli. J. Biochem. Mol. Biol. 34, 502-508.
  27. Shaper, N. L., Hollis, G. F., Douglas, J. G., Kirsch, I. R. and Shaper, J. H. (1988) Characterization of the full length cDNA for murine beta-1,4- galactosyltransferase. novel features at the 5'-end predict two translational start sites at two in-frame AUGs. J. Biol. Chem. 263, 10420-10428.
  28. Sun, S., Schilling, B., Tarantino, L., Tullius, M. V., Gibson, B. W. and Munson, JR. R. S. (2000) Cloning and characterization of the lipooligosaccharide galactosyltrnasferase II gene of Haemophilus ducreyi. J. Bacteriol. 182, 2292-2298. https://doi.org/10.1128/JB.182.8.2292-2298.2000
  29. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97-130. https://doi.org/10.1093/glycob/3.2.97
  30. Wakarchuk, W. W., Cunningham, A., Watson, D. C. and Young, N. M. (1998) Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen. Neiserria meningitidis. Protein Engineering 11, 295-302. https://doi.org/10.1093/protein/11.4.295

Cited by

  1. Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases vol.46, pp.33, 2010, https://doi.org/10.1039/c0cc01381a
  2. Moraxella catarrhalis Lgt2, a galactosyltransferase with broad acceptor substrate specificity vol.345, pp.15, 2010, https://doi.org/10.1016/j.carres.2010.07.042
  3. Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling vol.291, pp.32, 2016, https://doi.org/10.1074/jbc.M116.738765
  4. Two Glycosyltransferase Genes of Haemophilus parasuis SC096 Implicated in Lipooligosaccharide Biosynthesis, Serum Resistance, Adherence, and Invasion vol.6, 2016, https://doi.org/10.3389/fcimb.2016.00100
  5. Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues vol.38, pp.4, 2005, https://doi.org/10.5483/BMBRep.2005.38.4.474
  6. B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1 vol.4, pp.6, 2013, https://doi.org/10.1038/cddis.2013.186
  7. Acceptor substrate specificity of UDP-Gal: GlcNAc-R β1,3-galactosyltransferase (WbbD) from Escherichia coli O7:K1 vol.25, pp.7, 2008, https://doi.org/10.1007/s10719-008-9127-7
  8. Citrate Stimulates Oligosaccharide Synthesis in Metabolically Engineered Agrobacterium sp. vol.164, pp.6, 2011, https://doi.org/10.1007/s12010-011-9179-1
  9. Backbone 1H, 15N, and 13C Resonance Assignments of the Helicobacter pylori Acyl Carrier Protein vol.36, pp.5, 2003, https://doi.org/10.5483/BMBRep.2003.36.5.505