DOI QR코드

DOI QR Code

Dynamics of Supercoiled and Relaxed pTZ18U Plasmids Probed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung-Sook (Department of Oral Biochemistry and Molecular Biology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Abugo, Omoefe O. (Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore) ;
  • Lakowicz, Joseph R. (Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore)
  • Published : 2002.07.31

Abstract

$[Ru(bpy)_2(dppz)]^2+$ (bpy=2,2'-bipyfidine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuBD), a long-lifetime metal-ligand complex, displays favorable photophysical properties. These include long lifetime, polarized emission, but no significant fluorescence from the complex that is not bound to DNA. To show the usefulness of this luminophore (RuBD) for probing the bending and torsional dynamics of nucleic acids, its intensity and anisotropy decays when intercalated into supercoiled and relaxed pTZ18U plasmids were examined using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetimes for the supercoiled plasmids (< $\tau$ >=148 ns) were somewhat shorter than those for the relaxed plasmids (< $\tau$ >=160 ns). This suggests that the relaxed plasmids were shielded more efficiently from water. The anisotropy decay data also showed somewhat shorter slow rotational correlation times for supercoiled plasmids (288 ns) than for the relaxed plasmids (355 ns). The presence of two rotational correlation times suggests that RuBD reveals both the bending and torsional motions of the plasmids. These results indicate that RuBD can be useful for studying both the bending and torsional dynamics of mucleic acids.

Keywords

References

  1. Chirico, G. and Baldini, G. (\996) Rotational diffusion and internal motions of circular DNA. $\Pi$. Depolarized photon correlation spectroscopy. J. Chem. Phys. 104, 6020-6026. https://doi.org/10.1063/1.471307
  2. DeGraff, B. A. and Demas, J. N. (1994) Direct measurement of rotational correlation times of luminescent ruthenium ($\Pi$) molecular probes by differential polarized phase fluorometry. J. Phys. Chem. 98, 12478-12480. https://doi.org/10.1021/j100099a006
  3. Feddersen, B. A., Piston, D. W. and Gratton, E. (1989) Digital parallel acquisition in frequency domain fluorimetry. Rev. Sci. lnstrum. 60, 2929-2936. https://doi.org/10.1063/1.1140629
  4. Fishman, D. M. and Patterson, G. D. (1996) Light scattering studies of supercoiled and nicked DNA. Biopolymers 38, 535-552. https://doi.org/10.1002/(SICI)1097-0282(199604)38:4<535::AID-BIP9>3.0.CO;2-U
  5. Friedman, A. E., Chambron, J.-C., Sauvage, J.-P., Turro, N. J. and Barton, J. K. (1990) "Molecular light switch" for DNA: $Ru(bpy)_{2}(dppz)^{2+}$. J Am. Chem. Soc. 112,4960-4962. https://doi.org/10.1021/ja00168a052
  6. Gratton, E., Limkeman, M., Lakowicz, J. R, Maliwal, B. P., Cherek, H. and Laczko, G. (1984) Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J. 46, 479-486. https://doi.org/10.1016/S0006-3495(84)84044-8
  7. Haugen, G. R and Lytle, F. E. (1981) Quantitation of fluorophores in solution by pulsed laser excitation of time-filtered detection. Anal. Chem.53, 1554-1559. https://doi.org/10.1021/ac00234a004
  8. Jenkin, Y, Friedman, A. E., TUITo, N. J. and Barton, J. K. (1992) Characterization of dipyridophenazine complexes of ruthenium ($\Pi$): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry 31, 10809-10816. https://doi.org/10.1021/bi00159a023
  9. Kang, J. S., Abugo, O. O. and Lakowicz, J. R (2002) Dynamics of supercoiled and linear plZ18U plasmids observed with a long-lifetime metal-ligand complex. Biopolymers 67, 121-128, 2002. https://doi.org/10.1002/bip.10057
  10. Kang, J. S. and Lakowicz, J. R. (2001) Fluorescence resonance energy transfer in calf thymus DNA from a long-lifetime metal-ligand complex to nile blue. J. Biochem. Mol. Biol. 34, 551-558.
  11. Kielkopf, C. L., Ding, S., Kuhn, P. and Rees, D. C. (2000) Conformational flexibility of B-DNA at 0.74 angstrom resolution: d(CCAGTACTGG)_{2}. J. Mol. BioI. 296, 787-801. https://doi.org/10.1006/jmbi.1999.3478
  12. Lakowicz, J. R (1999) Principles of Fluorescence Spectroscopy, 2nd ed., pp. 98-101, Kluwer Academic/Plenum Publishers, NewYork, New York.
  13. Lakowicz, J. R, Gryczinski, I., Piszczek, G., Tolosa, L., Nair, R, Johnson, M. L. and Nowaczyk, K. (2000) Microsecond dynamics of biological molecules. Methods Enzymol. 323, 473-509. https://doi.org/10.1016/S0076-6879(00)23379-X
  14. Lakowicz, J. R, Laczko, G., Cherek, H., Gratton, E. and Limkeman, M. (1984) Analysis of fluorescence decay kinetics from variable-frequency phase-shift and modulation data. Biophys. J. 46,463-477. https://doi.org/10.1016/S0006-3495(84)84043-6
  15. Lakowicz, J. R, Malak, H., Gryczynski, I., Castellano, F. N. and Meyer, G. J. (1995) DNA dynamics observed with long lifetime metal-ligand complexes. Biospectroscopy 1, 163-168. https://doi.org/10.1002/bspy.350010302
  16. Lakowicz, J. R and Maliwal, B. P. (1985) Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys. Chem. 21,61-78. https://doi.org/10.1016/0301-4622(85)85007-9
  17. Lakowicz, J. R., Piszczek, G. and Kang, J. S. (2001) On the possibility of long-wavelength long-lifetime high-quantum yield luminophores. Anal. Biochem. 288, 62-75. https://doi.org/10.1006/abio.2000.4860
  18. Langowski, J. and Giesen, U. (1989) Configurational and dynamic properties of different length superhelical DNAs measured by dynamic light scattering. Biophys. Chem. 34, 9-18. https://doi.org/10.1016/0301-4622(89)80036-5
  19. Langowski, J., Kremer, W. and Kapp, U. (1992) Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA. Methods Enzymol. 211, 430-448. https://doi.org/10.1016/0076-6879(92)11023-C
  20. Lee, J. H. and Choi, B. S. (2000) Structure of a DNA duplex containing a site-specific Dewar isomer: structural influence of the 3'-T. G base pair of the Dewar product. J. Biochem. Mol. BioI. 33, 268-275.
  21. Malak, H., Gryczinski, I., Lakowicz, J. R., Meyers, G. J. and Castellano, F. N. (1997) Long-lifetime metal-ligand complexes as luminescent probes for DNA. J. Fluorescence 7, 107-112. https://doi.org/10.1007/BF02760501
  22. Murphy, C. J. and Barton, J. K. (1993) Ruthenium complexes as luminescent reporters of DNA. Methods Enzymol. 226, 576-594. https://doi.org/10.1016/0076-6879(93)26027-7
  23. Okonogi, T. M., Alley, S. C., Reese, A. W., Hopkins, P. B. and Robinson, B. H. (2000) Sequence-dependent dynamics in duplex DNA. Biophys. J. 78, 2560-2571. https://doi.org/10.1016/S0006-3495(00)76800-7
  24. Rajski, S. R, Jackson, B. A. and Barton, J. K. (2000) DNA repair: models for damage and mismatch recognition. Mutat. Res. 447, 49-72. https://doi.org/10.1016/S0027-5107(99)00195-5
  25. SchuIT, J. M., Fujimoto, B. S., Wu, P. and Song, L. (1992) Fluorescence studies of nucleic acids: dynamics, rigidities, and structures; in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, Lakowicz, J. R. (ed.), pp. 137-229, Plenum Press, New York, New York
  26. Sipior, J., Carter, J. M., Lakowicz, J. R and Rao, G. (1996) Single quantum well light-emitting diodes demonstrated as excitation sources for nanosecond phase modulation fluorescence lifetime measurements. Rev. Sci. Instr. 67, 3795-3798. https://doi.org/10.1063/1.1147279
  27. Terpetschnig, E., Szmacinski, H. and Lakowicz, J. R. (1997) Long-lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol. 278, 295-321. https://doi.org/10.1016/S0076-6879(97)78016-9
  28. Waring, M. (1970) Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J. Mol. BioI. 54, 247-279. https://doi.org/10.1016/0022-2836(70)90429-8

Cited by

  1. Light emitting diode-based detectors vol.500, pp.1-2, 2003, https://doi.org/10.1016/S0003-2670(03)00575-0
  2. Luminescent metal-ligand complexes as probes of macromolecular interactions and biopolymer dynamics vol.453, pp.1, 2006, https://doi.org/10.1016/j.abb.2006.03.007
  3. Dynamics of Bacteriophage R17 Probed with a Long-Lifetime Ru(II) Metal-Ligand Complex vol.20, pp.3, 2010, https://doi.org/10.1007/s10895-010-0612-6
  4. Dynamics of tRNAtyr Probed with Long-Lifetime Metal-Ligand Complexes vol.21, pp.1, 2011, https://doi.org/10.1007/s10895-010-0710-5
  5. Transforming Growth Factor-β: Biology and Clinical Relevance vol.38, pp.1, 2005, https://doi.org/10.5483/BMBRep.2005.38.1.001
  6. Enhanced DNA dynamics due to cationic reagents, topological states of dsDNA and high mobility group box 1 as probed by PicoGreen vol.276, pp.2, 2009, https://doi.org/10.1111/j.1742-4658.2008.06802.x
  7. Dynamics of Supercoiled and Linear pBluescript II SK(+) Phagemids Probed with a Long-lifetime Metal-ligand Complex vol.38, pp.1, 2005, https://doi.org/10.5483/BMBRep.2005.38.1.104