DOI QR코드

DOI QR Code

Cellular and Molecular Pathways of Ischemic Neuronal Death

  • Won, Seok-Joon (Center for the Interventional Therapy of Stroke and Alzheimers Disease, Department of Pharmacology, Ajou University School of Medicine) ;
  • Kim, Doo-Yeon (Genetics and Aging Research Unit, Massachusetts General Hospital East) ;
  • Gwag, Byoung-Joo (Center for the Interventional Therapy of Stroke and Alzheimers Disease, Department of Pharmacology, Ajou University School of Medicine)
  • Published : 2002.01.31

Abstract

Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of $Ca^{2+}$ and $Na^+$ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.

Keywords

References

  1. Alessandrini, A., Namura, S., Moskowitz, M. A. and Bonventre, J. V. (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 12866-12869. https://doi.org/10.1073/pnas.96.22.12866
  2. Allen, J. W., Knoblach, S. M. and Faden, A. I. (1999) Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3- dependent apoptosis. FASEB J. 13, 1875-1882. https://doi.org/10.1096/fasebj.13.13.1875
  3. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A. and Nicotera, P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961-973. https://doi.org/10.1016/0896-6273(95)90186-8
  4. Antonawich, F. J., Federoff, H. J. and Davis, J. N. (1999) BCL-2 transduction, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia. Exp. Neurol. 156, 130-137. https://doi.org/10.1006/exnr.1998.7004
  5. Arai, K., Nishiyama, N., Matsuki, N. and Ikegaya, Y. (2001) Neuroprotective effects of lipoxygenase inhibitors against ischemic injury in rat hippocampal slice cultures. Brain Res. 904,167-172. https://doi.org/10.1016/S0006-8993(01)02491-X
  6. Atlante, A., Valenti, D., Gagliardi, S. and Passarella, S. (2000) A sensitive method to assay the xanthine oxidase activity in primary cultures of cerebellar granule cells. Brain Res. Protoc. 6, 1-5. https://doi.org/10.1016/S1385-299X(00)00030-1
  7. Au, A. M., Chan, P. H. and Fishman, R. A. (1985) Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries. J. Cell. Biochem. 27, 449-53. https://doi.org/10.1002/jcb.240270413
  8. Baeuerle, P. A. and Baltimore, D. (1996) NF-kappa B: ten years after. Cell 87, 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  9. Barone, F. C., Irving, E. A., Ray, A. M., Lee, J. C., Kassis, S., Kumar, S., Badger, A. M., White, R. F., McVey, M. J., Legos, J. J., Erhardt, J. A., Nelson, A. H., Ohlstein, E. H., Hunter, A J., Ward, K., Smith, B. R., Adams, J. L. and Parsons, A. A. (2001) SB 239063, a Second-Generation p38 Mitogen-Activated Protein Kinase Inhibitor, Reduces Brain Injury and Neurological Deficits in Cerebral Focal Ischemia. J. Pharmacol. Exp. Ther. 296, 312-321.
  10. Beck, T., Lindholm, D., Castren, E. and Wree, A. (1994) Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J. Cereb. Blood Flow Metab. 14, 689-692. https://doi.org/10.1038/jcbfm.1994.86
  11. Beckman, J. S. (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836-844. https://doi.org/10.1021/tx9501445
  12. Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral mecrodialysis. J. Neurochem. 43, 1369-1374. https://doi.org/10.1111/j.1471-4159.1984.tb05396.x
  13. Bonventre, J. V. (1997) Roles of phospholipases A2 in brain cell and tissue injury associated with ischemia and excitotoxicity. J. Lipid Mediat. Cell Signal. 16, 199-208. https://doi.org/10.1016/S0929-7855(97)00014-X
  14. Bonventre, J. V., Huang, Z., Taheri, M. R., O'Leary, E., Li, E., Moskowitz, M. A. and Sapirstein, A (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase $A_2$. Nature 390, 622-625. https://doi.org/10.1038/37635
  15. Bredesen, D. E. (1994) Neuronal apoptosis: Genetic and biochemical modulation, in Apoptosis II: The Molecular Basis of Apoptosis in desease, Tomei, L. D. and Cope, F. O. (eds.), pp. 397-421, Cold Spring Harbor Laboratory Press, Plainview, New York.
  16. Brookes, P. S., Bolanos, J. P. and Heales, S. J. (1999) The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Lett. 446, 261-263. https://doi.org/10.1016/S0014-5793(99)00217-3
  17. Buchan, A., Li, H. and Pulsinelli, W. A. (1991) The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J. Neurosci. 11, 1049-1056. https://doi.org/10.1523/JNEUROSCI.11-04-01049.1991
  18. Buchan, A. M., Xue, D., Huang, Z. G., Smith, K. H. and Lesiuk, H. (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport 2, 473-476. https://doi.org/10.1097/00001756-199108000-00016
  19. Budd, S. L. and Nicholls, D. G. (1998) Mitochondria in the life and death of neurons. Essays. Biochem 33, 43-52. https://doi.org/10.1042/bse0330043
  20. Cao, W., Carney, J. M., Duchon, A, Floyd, R. A. and Chevion, M. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci. Lett. 88, 233-238. https://doi.org/10.1016/0304-3940(88)90132-2
  21. Carafoli, E. (1991) Calcium pump of the plasma membrane. Physiol. Rev. 71, 129-153. https://doi.org/10.1152/physrev.1991.71.1.129
  22. Carafoli, E. and Molinari, M. (1998) Calpain: a protease in search of a function? Biochem. Biophys. Res. Commun. 247, 193-203. https://doi.org/10.1006/bbrc.1998.8378
  23. Cassina, A. and Radi, R. (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys. 328, 309-16. https://doi.org/10.1006/abbi.1996.0178
  24. Chan, P. H. (1996) Role of oxidants in ischemic brain damage. Stroke 27, 1124-1129. https://doi.org/10.1161/01.STR.27.6.1124
  25. Chao, D. T. and Korsmeyer, S. J. (1998) BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16, 395-419. https://doi.org/10.1146/annurev.immunol.16.1.395
  26. Chaniaut-Marlangue, C. and Ben-Ari, Y. (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7,61-64. https://doi.org/10.1097/00001756-199512000-00014
  27. Cheema, Z. F., Wade, S. B., Sata, M., Walsh, K., Sohrabji, F. and Miranda, R. C. (1999) Fas/Apo [apoptosis ]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J. Neurosci. 19, 1754-1770. https://doi.org/10.1523/JNEUROSCI.19-05-01754.1999
  28. Chen, J., Nagayama, T., Jin, K., Stetler, R. A., Zhu, R. L., Graharn, S. H. and Simon, R. P. (1998) Induction of caspase-3- like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18, 4914-4928. https://doi.org/10.1523/JNEUROSCI.18-13-04914.1998
  29. Chiu, A. Y., Chen, E. W. and Loera, S. (1994) Distinct neurotrophic responses of axotomized motor neurons to BDNF and CNTF in adult rats. Neuroreport 5, 693-696. https://doi.org/10.1097/00001756-199402000-00008
  30. Choi, D. W. (1987) Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369-379. https://doi.org/10.1523/JNEUROSCI.07-02-00369.1987
  31. Choi, D. W. (2001) Excitotoxicity, apoptosis, and ischemic stroke. J. Biochem. Mol. Biol. 34, 8-14.
  32. Chum, S. B., Limbrick, D., Sombati, S. and Delorenzo, R. J. (1995) Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J. Neurosci. 15, 3200-3214. https://doi.org/10.1523/JNEUROSCI.15-04-03200.1995
  33. Clapp, L. E., Kiette, K. L., DeCoster, M. A., Bemton, E., Petras, J. M., Dave, J. R., Laskosky, M. S., Smallridge, R. C. and Tortella, F. C. (1995) Phospholipase A2-induced neurotoxicity in vitro and in vivo in rats. Brain Res. 693, 101-111. https://doi.org/10.1016/0006-8993(95)00720-B
  34. Cohen, A., Bray, G. M. and Aguayo, A. J. (1994) Neurotrophin-4/ 5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J. Neurobiol. 25, 953-959. https://doi.org/10.1002/neu.480250805
  35. Colbourne, F., Sutherland, G. R. and Auer, R. N. (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci. 19, 4200-4210. https://doi.org/10.1523/JNEUROSCI.19-11-04200.1999
  36. Cole, T. B., Robbins, C. A., Wenzel, H. J., Schwartzkroin, P. A. and Palmiter, R. D. (2000) Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 39, 153-169. https://doi.org/10.1016/S0920-1211(99)00121-7
  37. Collaco-Moraes, Y., Aspey, B., Hanison, M. and de Belleroche, J. (1996) Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16, 1366-1372. https://doi.org/10.1097/00004647-199611000-00035
  38. Colvin, R. A., Davis, N., Nipper, R. W. and Carter, P. A. (2000) Zinc transport in the brain: routes of zinc influx and efflux in neurons. J. Nutr. 130, 1484S-1487S. https://doi.org/10.1093/jn/130.5.1484S
  39. Cross, T. G., Scheel-Toellner, D., Henriquez, N. V., Deacon, E., Salmon, M. and Lord, J. M. (2000) Serine/threonine protein kinases and apoptosis. Exp. Cell Res. 256, 34-41. https://doi.org/10.1006/excr.2000.4836
  40. Dalkara, T., Yoshida, T., Irikura, K. and Moskowitz, M. A. (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33, 1447-1452. https://doi.org/10.1016/0028-3908(94)90048-5
  41. Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M. A., Lassota, P. and Traganos, F. (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795-808. https://doi.org/10.1002/cyto.990130802
  42. Davies, A. M. (1994) The role of neurotrophins in the developing nervous system. J. Neurobiol. 25, 1334-1348. https://doi.org/10.1002/neu.480251103
  43. Dawson, T. M., Dawson, V. L. and Snyder, S. H. (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann. Neurol. 32, 297-311. https://doi.org/10.1002/ana.410320302
  44. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R. and Snyder, S. H. (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651- 2661. https://doi.org/10.1523/JNEUROSCI.13-06-02651.1993
  45. Deibel, M. A., Ehmann, W. D. and Markesbery, W. R. (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress. J. Neurol. Sci. 143, 137-142. https://doi.org/10.1016/S0022-510X(96)00203-1
  46. Desagher, S. and Martinou, J. C. (2000) Mitochondria as the central control point of apoptosis. Trends. Cell Biol. 10, 369- 377. https://doi.org/10.1016/S0962-8924(00)01803-1
  47. Ding, D., Moskowitz, S. I., Li, R., Lee, S. B., Esteban, M., Tomaselli, K., Chan, J. and Bergold, P. J. (2000) Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp. Neurol. 162, 1-12. https://doi.org/10.1006/exnr.2000.7226
  48. Dubinsky, J. M. and Levi, Y. (1998) Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons. J. Neurosci. Res. 53, 728-741. https://doi.org/10.1002/(SICI)1097-4547(19980915)53:6<728::AID-JNR10>3.0.CO;2-U
  49. Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P. and Choi, D. W. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15, 6377-6388. https://doi.org/10.1523/JNEUROSCI.15-10-06377.1995
  50. Dumuis, A., Pin, J. P., Oomagari, K., Sebben, M. and Bockaert, J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347, 182-184. https://doi.org/10.1038/347182a0
  51. Dykens, J. A. (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated $CA^{2+}\;and\;Na^+$: implications for neurodegeneration. J. Neurochem. 63, 584-591. https://doi.org/10.1046/j.1471-4159.1994.63020584.x
  52. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424. https://doi.org/10.1146/annurev.biochem.68.1.383
  53. Ellison, G. (1995) The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Rev. 20, 250- 267. https://doi.org/10.1016/0165-0173(94)00014-G
  54. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43- 50. https://doi.org/10.1038/34112
  55. Enright, H., Hebbel, R. P. and Nath, K. A. (1994) Intemucleosomal cleavage of DNA as the sole criterion for apoptosis may be artifactual. J. Lab. Clin. Med. 124, 63-68.
  56. Faddis, B. T., Hasbani, M. J. and Goldberg, M. P. (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J. Neurosci. 17,951-959. https://doi.org/10.1523/JNEUROSCI.17-03-00951.1997
  57. Felderhoff-Mueser, U., Taylor, D. L., Greenwood, K., Kozma, M., Stibenz, D., Joashi, U. C., Edwards, A. D. and Mehmet, H. (2000) Fas/CD95/ APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol. 10, 17-29. https://doi.org/10.1111/j.1750-3639.2000.tb00239.x
  58. Femandez-Schanchez, M. T. and Novelli A. (1993) Basic fibroblast growth factor protects cerebellar neurons in primary culture from NMDA and non-NMDA receptor mediated neurotoxicity. FEBS Lett. 335, 124-131. 1993. https://doi.org/10.1016/0014-5793(93)80453-2
  59. Fix, A. S., Hom, J. W., Wightman, K. A., Jolmson, C. A., Long, G. G., Storts, R W., Farber, N., Wozniak, D. F. and Olney, J. W. (1993) Neuronal vacuolization and necrosis induced by the noncompetItIve N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp. Neurol. 123, 204-215. https://doi.org/10.1006/exnr.1993.1153
  60. Frederickson, C. J. and Moncrieff, D. W. (1994) Zinc-containing neurons. Biol. Signals 3, 127-139. https://doi.org/10.1159/000109536
  61. Freund, W. D. and Reddig, S. (1994)$AMPA/Zn(^{2+})$-induced neurotoxicity in rat primary cortical cultures: involvement of L-type calcium channels. Brain Res. 654, 257-264. https://doi.org/10.1016/0006-8993(94)90487-1
  62. Friedman, B., Kleinfeld, D., Ip, N. Y., Verge, V. M., Moulton, R., Boland, P., Zlotchenko, E., Lindsay, R. M. and Liu, L. (1995) BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons. J. Neurosci. 15, 1044-1056. https://doi.org/10.1523/JNEUROSCI.15-02-01044.1995
  63. Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M. and Chan, P. H. (1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 18, 1239-1247. https://doi.org/10.1097/00004647-199811000-00010
  64. Fukunaga, K., Soderling, T. R. and Miyamoto, E. (1992) Activation of $Ca^{2+}$/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampal neurons. J. BioI. Chem. 267, 22527-22533.
  65. Furlong, I. J., Ascaso, R., Lopez, R. A. and Collins, M. K. (1997) Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J. Cell Sci. 110, 653-661.
  66. Gavrieli, Y., Sherman, Y. and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell BioI. 119, 493- 501. https://doi.org/10.1083/jcb.119.3.493
  67. Ghatan, S., Lamer, S., Kinoshita, Y., Hetman, M., Patel, L., Xia, Z., Youle, R J. and Morrison, R S. (2000) p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J. Cell Biol. 150, 335-347. https://doi.org/10.1083/jcb.150.2.335
  68. Gill, D. L., Ghosh, T. K. and Mullaney, J. M. (1989) Calcium signaling mechanisms in endoplasmic reticulum activated by inositol 1.4.5-trisphosphate and GTP. Cell Calcium 10, 363- 374. https://doi.org/10.1016/0143-4160(89)90062-6
  69. Giulivi, C., Boveris, A. and Cadenas, E. (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch. Biochem. Biophys. 316,909-16. https://doi.org/10.1006/abbi.1995.1122
  70. Goldberg, M. P., Weiss, J. H., Pham, P. C. and Choi, D. W. (1987) N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J. Pharmac. Exp. Ther. 243, 784-791.
  71. Goodman, Y. and Mattson, M. P. (1996) Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta-peptide toxicity. J. Neurochem. 66, 869-872. https://doi.org/10.1046/j.1471-4159.1996.66020869.x
  72. Gorter,J. A., Petrozzino, J. J., Aronica, E. M., Rosenbaum, D. M., Opitz, T., Bennett, M.V., Connor, J. A. and Zukin, R. S. (1997) Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated $Ca^{2+}$ influx in hippocampal CA1 neurons of gerbil. J. Neurosci. 17, 6179- 6188. https://doi.org/10.1523/JNEUROSCI.17-16-06179.1997
  73. Gottron, F. J., Ying, H. S. and Choi, D. W. (1997) Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell Neurosci. 9, 159-169. https://doi.org/10.1006/mcne.1997.0618
  74. Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W. and Schulte-Hermann, R. (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21, 1465-1468.
  75. Greenberg, J. H., Uematsu, D., Araki, N., Hickey, W. F. and Reivich, M. (1990) Cytosolic free calcium during focal cerebral ischemia and the effects of nimodipine on calcium and histologic damage. Stroke 21, IV72-IV77. https://doi.org/10.1161/01.STR.21.1.72
  76. Greenlund, L. J., Deckwerth, T. L. and Johnson, E. M. (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14, 303-315. https://doi.org/10.1016/0896-6273(95)90287-2
  77. Grilli, M., Pizzi, M., Memo, M. and Spano, P. F. (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-kB activation. Science 274, 1383-1385. https://doi.org/10.1126/science.274.5291.1383
  78. Gross, A., Jockel, J., Wei, M. C. and Korsmeyer, S. J. (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878- 3885. https://doi.org/10.1093/emboj/17.14.3878
  79. Gunter, K. K. and Gunter, T. E. (1994) Transport of calcium by mitochondria. J. Bioenerg. Biomembr. 26,471-485. https://doi.org/10.1007/BF00762732
  80. Gunter, T. E. and Pfeiffer, D. R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755- C786. https://doi.org/10.1152/ajpcell.1990.258.5.C755
  81. Gwag, B. J., Ryu, B. R., Lee, Y. A., Chang, S-Y., Noh, J-H., Chung, J-M. and Yoon, S-H. (2000) Multiple neuroprotective effects of sulfasalazine against NMDA, free radicals and zinc, presented at 30th annual meeting of society for neuroscience, New Orleans.
  82. Gwag, B. J., Canzoniero, L. M., Sensi, S. L., DeMaro, J. A., Koh, J. Y., Goldberg, M. P., Jacquin, M. and Choi, D. W. (1999) Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons. Neuroscience 90, 1339-1348. https://doi.org/10.1016/S0306-4522(98)00508-9
  83. Gwag, B. J., Koh, J. Y., Chen, M. M., Dugan, L. L., Behrens, M. M., Lobner, D. and Choi, D. W. (1995) BDNF or IGF-I potentiates free radical-mediated injury in cortical cell cultures. Neuroreport 7, 93-96. https://doi.org/10.1097/00001756-199512000-00022
  84. Gwag, B. J., Koh, J. Y., DeMaro, J. A., Ying, H. S., Jacquin, M. and Choi, D. W. (1997) Slowly triggered excitotoxicity occurs by necrosis in cortical cultures. Neuroscience 77, 393-401. https://doi.org/10.1016/S0306-4522(96)00473-3
  85. Gwag, B. J., Lobner, D., Koh, J. Y., Wie, M. B. and Choi. D. W. (1995) Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 68, 615-619. https://doi.org/10.1016/0306-4522(95)00232-8
  86. Haber, F. and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc., London A 147, 332. https://doi.org/10.1098/rspa.1934.0221
  87. Hajimohammadreza, I., Probert, A. W., Coughenour, L. L., Borosky, S. A., Marcoux, F. W., Boxer, P. A. and Wang, K. K. (1995) A specific inhibitor of calcium/calmodulin-dependent protein kinase-II provides neuroprotection against NMDA- and hypoxiaJhypoglycemia-induced cell death. J. Neurosci. 15, 4093-4101. https://doi.org/10.1523/JNEUROSCI.15-05-04093.1995
  88. Hanson, S. K., Grotta, J. C., Waxham, M. N., Aronowski, J. and Ostrow, P. (1994) CalciUm/calmodulin-dependent protein kinase II activity in focal ischemia with reperfusion in rats. Stroke 25, 466-473. https://doi.org/10.1161/01.STR.25.2.466
  89. Hasegawa, K., Yoshioka, H., Sawada, T. and Nishikawa, H. (1993) Direct measurement of free radicals in the neonatal mouse brain subjected to hypoxia: an electron spin resonance spectroscopic study. Brain. Res. 607, 161-166. https://doi.org/10.1016/0006-8993(93)91502-J
  90. Hefti, F. (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6, 2155-2162. https://doi.org/10.1523/JNEUROSCI.06-08-02155.1986
  91. Herdegen, T., Claret, F. X., Kallunki, T., Martin-Villalba, A., Winter, C., Hunter, T. and Karin, M. (1998) Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J. Neurosci. 18,5124-5135. https://doi.org/10.1523/JNEUROSCI.18-14-05124.1998
  92. Hewett, S. J., Uliasz, T. F., Vidwans, A. S. and Hewett, J. A. (2000) Cyclooxygenase-2 contributes to N-methyl-D-aspartatemediated neuronal cell death in primary cortical cell culture. J. Phamwcol. Exp. Ther. 293, 417-425.
  93. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L. and Korsmeyer, S. J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241-251. https://doi.org/10.1016/0092-8674(93)80066-N
  94. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17,31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  95. Hong, S. C., Goto, Y., Lanzino, G., Soleau, S., Kassell, N. F. and Lee, K. S. (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25, 663-669. https://doi.org/10.1161/01.STR.25.3.663
  96. Hsu, Y. T., Wolter, K. G. and Youle, R. J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668-3672. https://doi.org/10.1073/pnas.94.8.3668
  97. Hwang, J. Y., Kim, Y. H., Ahn, Y. H., Wie, M. B. and Koh, J. Y. (1999) N-Methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp. Neurol. 159, 124- 130. https://doi.org/10.1006/exnr.1999.7126
  98. Iadecola, C., Niwa, K., Nogawa, S., Zhao, X., Nagayama, M., Araki, E., Morham, S. and Ross, M. E. (2001) Reduced susceptibility to ischemic brain injury and N-methyl-Daspartate- mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc. Natl. Acad. Sci. USA 98, 1294-1299. https://doi.org/10.1073/pnas.98.3.1294
  99. Iadecola, C., Zhang, F. and Xu, X. (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. 268, R286-R292.
  100. Iadecola, C., Zhang, F., Xu, S., Casey, R. and Ross, M. E. (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J. Cereb. Blood Flow Metab. 15, 378-384. https://doi.org/10.1038/jcbfm.1995.47
  101. Ikonomidou, C., Bosch, F., Miksa, M., Bittigau, P., Vockler, J., Dikranian, K, Tenkova, T. I., Stefovska, V., Turski, L. and Olney, J. W. (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283,70-74. https://doi.org/10.1126/science.283.5398.70
  102. Ip, Y. T. and Davis, R. J. (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr. Opin. Cell BioI. 10, 205-219. https://doi.org/10.1016/S0955-0674(98)80143-9
  103. Irving, E. A., Barone, F. C., Reith, A. D., Hadingham, S. J. and Parsons, A. A. (2000) Differential activation of MAPK/ERK and p38/SAPK in neurons and glia following focal cerebral ischemia in the rat. Mol. Brain Res. 77, 65-75. https://doi.org/10.1016/S0169-328X(00)00043-7
  104. Isenmann, S., Stoll, G., Schroeter, M., Krajewski, S., Reed, J. C. and Bahr, M. (1998) Differential regulation of Bax, Bcl-2, and Bcl-X proteins in focal cortical ischemia in the rat. Brain Pathol. 8, 49-62. https://doi.org/10.1111/j.1750-3639.1998.tb00134.x
  105. Ishikawa, Y., Ikeuchi, T. and Hatanaka, H. (2000) Brain-derived neurotrophic factor accelerates nitric oxide donor-induced apoptosis of cultured cortical neurons. J. Neurochem. 75, 494- 502. https://doi.org/10.1046/j.1471-4159.2000.0750494.x
  106. Jin, K., Graham, S. H., Nagayama, T., Goldsmith, P. C., Greenberg, D. A., Zhou, A. and Simon, R. P. (2001) Altered Expression of the Neuropeptide-Processing Enzyme Carboxypeptidase E in the Rat Brain After Global Ischemia. J. Cereb. Blood Flow Metab. 21, 1422-1429. https://doi.org/10.1097/00004647-200112000-00006
  107. Kahn, R. A., Panah, M. and Weinberger, J. (1997) Modulation of ischemic excitatory neurotransmitter and gamma-arninobutyric acid release during global temporary cerebral ischemia by selective neuronal nitric oxide synthase inhibition. Anesth. Analg. 84,997-1003. https://doi.org/10.1097/00000539-199705000-00009
  108. Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y. and Nishida, E. (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. BioI. Chem. 272, 18518-18521. https://doi.org/10.1074/jbc.272.30.18518
  109. Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  110. Khaled, A. R., Kim, K., Hofmeister, R., Muegge, K. and Durum, S. K. (1999) Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA 96, 14476-14481. https://doi.org/10.1073/pnas.96.25.14476
  111. Khaled, A. R. and Durum, S. K. (2001) From cytosol to mitochondria: The Bax translocation story. J. Biochem. Mol. BioI. 34, 391-394.
  112. Kharbanda, S., Saxena, S., Yoshida, K., Pandey, P., Kaneki, M., Wang, Q., Cheng, K., Chen, Y. N., Campbell, A, Sudha, T., Yuan, Z. M., Narula, J., Weichselbaurn, R., Nalin, C. and Kufe, D. (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol. Chem. 275, 322-327. https://doi.org/10.1074/jbc.275.1.322
  113. Khodorov, B., Pinelis, V., Vergun, O., Storozhevykh, T. and Vinskaya, N. (1996) Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett. 397, 230-234. https://doi.org/10.1016/S0014-5793(96)01139-8
  114. Kim, D. K., Rordorf, G., Nemenoff, R. A., Koroshetz, W. J. and Bonventre, J. V. (1995) Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310, 83-90. https://doi.org/10.1042/bj3100083
  115. Kim, D. Y., Kim, S. H., Choi, H. B., Min, C. and Gwag, B. J. (2001) High abundance of GluRI mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons. Mol. Cell Neurosci. 17, 1025-1033. https://doi.org/10.1006/mcne.2001.0988
  116. Kim, E. Y., Woo, H. G., Lee, S. H. and Gwag, B. J. (1999) A causative activation of cyclooxygenase for zinc-induced generation of reactive oxygen species in cortical neurons, presented at 29th annual meeting of society for neuroscience, Florida.
  117. Kim, E. Y., Koh, J. Y., Kim, Y. H., Sohn, S., Joe, E. and Gwag, B. J. (1999) $Zn^{2+}$ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur. J. Neurosci. 11, 327-334. https://doi.org/10.1046/j.1460-9568.1999.00437.x
  118. Kim, Y. H., Kim, E. Y., Gwag, B. J., Sohn, S. and Koh, J. Y. (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 89, 175-82. https://doi.org/10.1016/S0306-4522(98)00313-3
  119. Knowles, R. G. and Moncada, S. (1994) Nitric oxide syntheses in mammals. Biochem. J. 298, 249-258. https://doi.org/10.1042/bj2980249
  120. Ko, H. W., Han, K. S., Kim, E. Y., Ryu, B. R., Yoon, W. J., Jung, Y. K., Kim, S. U. and Gwag, B. J. (2000) Synergetic activation of p38 mitogen-activated protein kinase and caspase-3-like proteases for execution of calyculin A-induced apoptosis but not N-methyl-d-aspartate-induced necrosis in mouse cortical neurons. J. Neurochem. 74, 2455-2461. https://doi.org/10.1046/j.1471-4159.2000.0742455.x
  121. Ko, H. W., Park, K. Y., Kim, H., Han, P. L., Kim, Y. U., Gwag, B. J. and Choi, E. J. (1998) $Ca^{2+}$-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures. J. Neurochem. 71, 1390-1395. https://doi.org/10.1046/j.1471-4159.1998.71041390.x
  122. Koh, J. Y. and Choi, D.W. (1994) Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors. Neuroscience 60, 1049-1057. https://doi.org/10.1016/0306-4522(94)90282-8
  123. Koh, J. Y., Goldberg, M. P., Hartley, D. M. and Choi, D. W. (1990) Non-NMDA receptor-mediated neurotoxicity in cortical culture. J. Neurosci. 10, 693-705. https://doi.org/10.1523/JNEUROSCI.10-02-00693.1990
  124. Koh, J. Y., Gwag, B. J., Lobner, D. and Choi, D. W. (1995) Potentiated necrosis of cultured cortical neurons by neurotrophins [see comments]. Science 268, 573-575. https://doi.org/10.1126/science.7725105
  125. Koh, J. Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y. and Choi, D. W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013- 1016. https://doi.org/10.1126/science.272.5264.1013
  126. Kondo, Y., Ogawa, N., Asanuma, M., Ora, Z. and Mori, A. (1995) Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J. Cereb. Blood. Flow. Metab. 15, 216-26. https://doi.org/10.1038/jcbfm.1995.27
  127. Kontos, H. A. (1987) Oxygen radicals from arachidonate metabolism in abnormal vascular responses. Am. Rev. Respir. Dis. 136, 474-477. https://doi.org/10.1164/ajrccm/136.2.474
  128. Kooy, N. W., Royall, J. A., Ischiropoulos, H. and Beckman, J. S. (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free. Radic. BioI. Med. 16, 149-56. https://doi.org/10.1016/0891-5849(94)90138-4
  129. Krajewski, S., Krajewska, M., Ellerby, L. M., Welsh, K., Xie, Z., Deveraux, Q. L., Salvesen, G. S., Bredesen, D. E., Rosenthal, R. E., Fiskum, G. and Reed, J. C. (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752-5757. https://doi.org/10.1073/pnas.96.10.5752
  130. Krajewski, S., Mai, J. K., Krajewska, M., Sikorska, M., Mossakowski, M. J. and Reed, J. C. (1995) Upregulation of bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15, 6364-6376. https://doi.org/10.1523/JNEUROSCI.15-10-06364.1995
  131. Kramer, R. M. and Sharp, J. D. (1997) Structure, function and regulation of $Ca^{2+}$-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett. 410,49-53. https://doi.org/10.1016/S0014-5793(97)00322-0
  132. Krause, G. S., White, B. C., Aust, S. D., Nayini, N. R. and Kumar, K. (1988) Brain cell death following ischemia and reperfusion: a proposed biochemical sequence. Crit. Care. Med. 16, 714-726. https://doi.org/10.1097/00003246-198807000-00015
  133. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60,619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
  134. Krohn, A. J., Preis, E. and Prehn, J. H. (1998) Staurosporineinduced apoptosis of cultured rat hippocampal neurons involves caspase-l-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J.Neurosci. 18, 8186-8197. https://doi.org/10.1523/JNEUROSCI.18-20-08186.1998
  135. Kruman, I., Guo, Q. and Mattson, M. P (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J.Neurosci. Res. 51, 293-308. https://doi.org/10.1002/(SICI)1097-4547(19980201)51:3<293::AID-JNR3>3.0.CO;2-B
  136. Kummer, J. L., Rao, P. K. and Heidenreich, K. A. (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J. Bioi. Chem. 272, 20490-20494. https://doi.org/10.1074/jbc.272.33.20490
  137. Lazarewicz, J. W., Wroblewski, J. T. and Costa, E. (1990) Nmethyl- D-aspartate-sensitive glutamate receptors induce calcium- mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55, 1875-1881. https://doi.org/10.1111/j.1471-4159.1990.tb05771.x
  138. Le-Niculescu, H., Bonfoco, E., Kasuya, Y., Claret, F. X., Green, D. R. and Karin, M. (1999) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell Biol. 19, 751-763. https://doi.org/10.1128/MCB.19.1.751
  139. Lee, J. Y., Cole, T. B., Palmiter, R. D. and Koh, J. Y. (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20, RC79. https://doi.org/10.1523/JNEUROSCI.20-11-j0003.2000
  140. Lee, J. Y., Kim, Y. H. and Koh, J. Y. (2001) Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 21, RC171. https://doi.org/10.1523/JNEUROSCI.21-20-j0002.2001
  141. Lee, K. S., Frank, S., Vanderklish, P., Arai, A. and Lynch, G. (1991) Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc. Natl. Acad. Sci. USA 88, 7233-7237. https://doi.org/10.1073/pnas.88.16.7233
  142. Li, Y., Chopp, M., Jiang, N., Zhang, Z. G. and Zaloga, C. (1995) Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26, 1252-1257. https://doi.org/10.1161/01.STR.26.7.1252
  143. Li, Y., Sharov, V. G., Jiang, N., Zaloga,C., Sabbah, H. N. and Chopp, M. (1995) Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am. J. Pathoi. 146, 1045-1051.
  144. Linnik, M. D., Zobrist, R. H. and Hatfield, M. D. (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24, 2002-2008. https://doi.org/10.1161/01.STR.24.12.2002
  145. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 364, 626-632. https://doi.org/10.1038/364626a0
  146. Liu, Z. Q., Kunimatsu, M., Yang, J. P., Ozaki, Y., Sasaki, M. and Okamoto, T. (1996) Proteolytic processing of nuclear factor kappa B by calpain in vitro. FEBS Lett. 385, 109-113. https://doi.org/10.1016/0014-5793(96)00360-2
  147. Luetjens, C. M., Bui, N. T., Sengpiel, B., Munstermann, G., Poppe, M., Krohn, A. J., Bauerbach, E., Krieglstein. J. and Prehn, J. H. (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci. 20, 5715-5723. https://doi.org/10.1523/JNEUROSCI.20-15-05715.2000
  148. Ma, J., Endres, M. and Moskowitz, M. A (1998) Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischemia in mice. Br. J. Phannacol. 124, 756-762. https://doi.org/10.1038/sj.bjp.0701871
  149. MacManus, J. P., Buchan, A. M., Hill, I. E., Rasquinha, I. and Preston, E. (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci. Lett. 164, 89-92. https://doi.org/10.1016/0304-3940(93)90864-H
  150. Manev, H., Favaron, M., Siman, R., Guidotti, A and Costa, E. (1991) Glutamate neurotoxicity is independent of calpain I inhibition in primary cultures of cerebellar granule cells. J. Neurochem. 57, 1288-1295. https://doi.org/10.1111/j.1471-4159.1991.tb08292.x
  151. Mansour-Robaey, S., Clarke, D. B., Wang, Y. C., Bray, G. M. and Aguayo, A. J. (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth ofaxotomized retinal ganglion cells. Proc. Natl. Acad. Sci. USA 91, 1632-1636. https://doi.org/10.1073/pnas.91.5.1632
  152. Maroney, A. C., Glicksman, M. A., Basma, A. N., Walton, K. M., Knight, E. J., Murphy, C. A., Bartlett, B. A., Finn, J. P., Angeles, T., Matsuda, Y., Neff, N. T. and Dionne, C. A. (1998) Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J. Neurosci. 18, 104-111. https://doi.org/10.1523/JNEUROSCI.18-01-00104.1998
  153. Martin-Villalba, A., Herr, I., Jeremias, I., Hahne, M., Brandt, R., Vogel, J., Schenkel, J., Herdegen, T. and Debatin, K. M. (1999) CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci. 19, 3809-3817. https://doi.org/10.1523/JNEUROSCI.19-10-03809.1999
  154. Martin, D. P., Schmidt, R. E., DiStefano, P. S., Lowry, O. H., Carter, J. G. and Johnson, E. M. (1988) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell BioI. 106, 829-844. https://doi.org/10.1083/jcb.106.3.829
  155. Martinou, J. C., Dubois-Dauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., Albertini, P., Talabot, D., Catsicas, S. and Pietra, C. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 10 17 -1030. https://doi.org/10.1016/0896-6273(94)90266-6
  156. Matsui, T., Nagafuji, T., Mori, T. and Asano, T. (1997) N omeganitro- L-arginine attenuates early ischemic neuronal damage of prolonged focal cerebral ischemia and recirculation in rats. Neurol. Res. 19, 192-203. https://doi.org/10.1080/01616412.1997.11740795
  157. Matsushita, K., Wu, Y., Qiu, J., Lang-Lazdunski, L., Hirt, L., Waeber, C., Hyman, B. T., Yuan, J. and Moskowitz, M. A (2000) Fas receptor and neuronal cell death after spinal cord ischemia. J. Neurosci. 20, 6879-6887. https://doi.org/10.1523/JNEUROSCI.20-18-06879.2000
  158. Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. and Reed, J. C. (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2, 318-325. https://doi.org/10.1038/35014006
  159. Matsuyama, T., Hata, R., Yamamoto, Y., Tagaya, M., Akita, H., Uno, H., Wanaka, A., Furuyama, J. and Sugita, M. (1995) Localization of Fas antigen mRNA induced in postischernic murine forebrain by in situ hybridization. Mol. Brain Res. 34, 166-172. https://doi.org/10.1016/0169-328X(95)00162-L
  160. Mattson, M. P., Goodman, Y., Luo, H., Fu, W. and Furukawa, K. (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49,681-697. https://doi.org/10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3
  161. McCord, J. M., Roy, R. S. and Schaffer, S. W. (1985) Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv. Myocardial. 5, 183-189.
  162. Merrill, J. E., Murphy, S. P., Mitrovic, B., Mackenzie-Graham, A., Dopp, J. C., Ding, M., Griscavage, J., Ignarro, L. J. and Lowenstein, C. J. (1997) Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J. Neurosci. Res. 48, 372-384. https://doi.org/10.1002/(SICI)1097-4547(19970515)48:4<372::AID-JNR9>3.0.CO;2-8
  163. Merry, D. E. and Korsmeyer, S. J. (1997) Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20, 245-267. https://doi.org/10.1146/annurev.neuro.20.1.245
  164. Mey, J. and Thanos, S. (1993) Intravitreal injections of neurotrophic factors support the survival ofaxotomized retinal ganglion cells in adult rats in vivo. Brain Res. 602, 304-317. https://doi.org/10.1016/0006-8993(93)90695-J
  165. Middleton, G., Hamanoue, M., Enokido, Y., Wyatt, S., Pennica, D., Jaffray, E., Hay, R. T. and Davies, A. M. (2000) Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. J Cell BioI. 148, 325-332. https://doi.org/10.1083/jcb.148.2.325
  166. Mielke, K. and Herdegen, T. (2000) JNK and p38 stress kinases-degenerative effectors of signal-transduction-cascades in the nervous system. Prog. Neurobiol. 61, 45-60. https://doi.org/10.1016/S0301-0082(99)00042-8
  167. Miettinen, S., Fusco, F. R., Yrjanheikki, J., Keinanen, R., Hirvonen, T., Roivainen, R., Narhi, M., Hokfelt, T. and Koistinaho, J. (1997) Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc. Natl. Acad. Sci. USA, 94, 6500-6505. https://doi.org/10.1073/pnas.94.12.6500
  168. Morioka, M., Fukunaga, K., Nagahiro, S., Kurino, M., Ushio, Y. and Miyamoto, E. (1995) Glutamate-induced loss of $Ca^{2+}$/calmodulin-dependent protein kinase II activity in cultured rat hippocampal neurons. J. Neurochem. 64, 2132-2139. https://doi.org/10.1046/j.1471-4159.1995.64052132.x
  169. Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D. and Schwartz, J. P. (1993) Synthesis of nitric oxide in CNS glial cells. Trends. Neurosci. 16, 323-328. https://doi.org/10.1016/0166-2236(93)90109-Y
  170. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365. https://doi.org/10.1016/S0092-8674(00)81874-7
  171. Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H., Matsushita, K., Moskowitz, M. A., Bonventre, J. V. and Alessandrini, A. (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 98, 11569-11574. https://doi.org/10.1073/pnas.181213498
  172. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J. and Moskowitz, M. A (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659-3668. https://doi.org/10.1523/JNEUROSCI.18-10-03659.1998
  173. Nanri, K., Montecot, C., Springhetti, V., Seylaz, J. and Pinard, E. (1998) The selective inhibitor of neuronal nitric oxide synthase, 7-nitroindazole, reduces the delayed neuronal damage due to forebrain ischemia in rats. Stroke 29, 1248-1253. https://doi.org/10.1161/01.STR.29.6.1248
  174. Neumar, R. W., Hagle, S. M., DeGracia, D. J., Krause, G. S. and White, B. C. (1996) Brain mu-calpain autolysis during global cerebral ischemia. J. Neurochem. 66,421-424. https://doi.org/10.1046/j.1471-4159.1996.66010421.x
  175. Nicholls, D. and Attwell, D. (1990) The release and uptake of excitatory amino acids. Trends. Pharmacol. Sci. 11, 462-468. https://doi.org/10.1016/0165-6147(90)90129-V
  176. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. and Riccardi, C. (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279. https://doi.org/10.1016/0022-1759(91)90198-O
  177. Noh, J. S., Kang, H. J., Kim, E.Y., Sohn, S., Chung, Y. K., Kim, S. U. and Gwag, B. J. (2000) Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH(2)-tenninal protein kinase. J. Neurochem. 75, 2327-2334. https://doi.org/10.1046/j.1471-4159.2000.0752327.x
  178. Noh, K. M. and Koh, J. Y. (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci. 20, RC111. https://doi.org/10.1523/JNEUROSCI.20-23-j0001.2000
  179. O'Neill, M. J., Hicks, C. and Ward, M. (1996) Neuroprotective effects of 7-nitroindazole in the gerbil model of global cerebral ischemia. Eur. J. Pharmacol. 310, 115-122. https://doi.org/10.1016/0014-2999(96)00387-1
  180. Olney, J. W., Labruyere, J., Wang, G., Wozniak, D. F., Price, M. T. and Sesma, M. A (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1515-1518. https://doi.org/10.1126/science.1835799
  181. Ostwald, K., Hagberg, H., Andine, P. and Karlsson, J. O. (1993) Upregulation of calpain activity in neonatal rat brain after hypoxic-ischemia. Brain Res. 630, 289-294. https://doi.org/10.1016/0006-8993(93)90668-D
  182. Ouagazzal, A., Nieoullon, A. and Amalric, M. (1993) Effects of dopamine D1 and D2 receptor blockade on MK-801-induced hyperlocomotion in rats. Psychopharmacology (Berl.) 111, 427- 434. https://doi.org/10.1007/BF02253532
  183. Ozawa, H., Shioda, S., Dohi, K., Matsumoto, H., Mizushima, H., Zhou, C. J., Funahashi, H., Nakai, Y., Nakajo, S. and Matsumoto, K. (1999) Delayed neuronal cell death in the rat hippocampus is mediated by the mitogen-activated protein kinase signal transduction pathway. Neurosci. Lett. 262, 57-60. https://doi.org/10.1016/S0304-3940(99)00034-8
  184. Park, E. C., Jou, I. and Gwag, B. J. (1998) Nerve growth factor potentiates the oxidative necrosis of striatal cholinergic neurons. NeuroReport 9, 687-690. https://doi.org/10.1097/00001756-199803090-00023
  185. Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V. and Zukin, R. S. (1997) The GluR2 (GluR-B) hypothesis: $Ca(^{2+})$-permeable AMPA receptors in neurological disorders. Trends. Neurosci. 20, 464-470. https://doi.org/10.1016/S0166-2236(97)01100-4
  186. Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V., Cho, S. and Pulsinelli, W. A. (1992) Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. USA 89, 10499-10503. https://doi.org/10.1073/pnas.89.21.10499
  187. Peng, T. I., Jou, M. J., Sheu, S. S. and Greenamyre, J. T. (1998) Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp. Neurol. 149, 1- 12. https://doi.org/10.1006/exnr.1997.6599
  188. Piantadosi, C. A. and Zhang, J. (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27, 327-332. https://doi.org/10.1161/01.STR.27.2.327
  189. Planas, A. M., Soriano, M. A., Rodriguez-Farre, E. and Ferrer, I. (1995) Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci. Lett. 200, 187-190. https://doi.org/10.1016/0304-3940(95)12108-G
  190. Plesnila, N., Zinkel, S., Le, D. A., Arnin-Hanjani, S., Wu, Y., Qiu, J., Chiarugi, A., Thomas, S. S., Kohane, D. S., Korsmeyer, S. J. and Moskowitz, M. A. (2001) BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia. Proc. Natl. Acad. Sci. USA (in press).
  191. Portera-Cailliau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775- 3787. https://doi.org/10.1523/JNEUROSCI.15-05-03775.1995
  192. Prehn, J. H., Jordan, J., Ghadge, G. D., Preis, E., Galindo, M. F., Roos, R. P., Krieglstein, J. and Miller, R. J. (1997) $Ca^{2+}$ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68, 1679-1685. https://doi.org/10.1046/j.1471-4159.1997.68041679.x
  193. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulthydryls. The cytotoxic potential of superoxide and nitric oxide. J. BioI. Chem. 266, 4244-4250.
  194. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288,481-487. https://doi.org/10.1016/0003-9861(91)90224-7
  195. Radi, R., Rodriguez, M., Castro, L. and Telleri, R. (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308, 89-95. https://doi.org/10.1006/abbi.1994.1013
  196. Radi, R., Sims, S., Cassina, A. and Turrens, J. F. (1993) Roles of catalase and cytochrome c in hydroperoxide-dependent lipid peroxidation and chemiluminescence in rat heart and kidney mitochondria. Free. Radic. Biol. Med. 15, 653-9. https://doi.org/10.1016/0891-5849(93)90169-U
  197. Rami, A. and Krieglstein, J. (1993) Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res. 609, 67-70. https://doi.org/10.1016/0006-8993(93)90856-I
  198. Raoul, C., Henderson, C. E. and Pettmann, B. (1999) Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell BioI. 147, 1049-1062. https://doi.org/10.1083/jcb.147.5.1049
  199. Ratan, R. R., Murphy, T. H. and Baraban, J. M. (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62, 376-379. https://doi.org/10.1046/j.1471-4159.1994.62010376.x
  200. Rego, A. C., Santos, M. S. and Oliveira, C. R. (2000) Glutamate-ediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochem Int. 36, 159-166. https://doi.org/10.1016/S0197-0186(99)00107-2
  201. Reynolds, J. E., Li, J., Craig, R. W. and Eastman, A. (1996) BCL- 2 and MCL-1 expression in Chinese hamster ovary cells inhibits intracellular acidification and apoptosis induced by staurosporine. Exp. Cell Res. 225, 430-436. https://doi.org/10.1006/excr.1996.0194
  202. Roberts-Lewis, J. M., Savage, M. J., Marcy, V. R., Pinsker, L. R. and Siman, R. (1994) Immunolocalization of calpain I- mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J. Neurosci. 14, 3934-3944. https://doi.org/10.1523/JNEUROSCI.14-06-03934.1994
  203. Robertson, J. D., Orrenius, S. and Zhivotovsky, B. (2000) Review: nuclear events in apoptosis. J. Struct. Biol. 129, 346-358. https://doi.org/10.1006/jsbi.2000.4254
  204. Rogawski, M. A. (2000) Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents--toward an understanding of their favorable tolerability. Amino. Acids 19, 133-149. https://doi.org/10.1007/s007260070042
  205. Rordorf, G., Uemura, Y. and Bonventre, J. V. (1991) Characterization of phospholipase A2 (PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci. 11, 1829-1836. https://doi.org/10.1523/JNEUROSCI.11-06-01829.1991
  206. Rosenbaum, D. M., D'Amore, J., Llena, J., Rybak, S., Balkany, A. and Kessler, J. A. (1998) Pretreatment with intraventricular aurintricarboxylic acid decreases infarct size by inhibiting apoptosis following transient global ischemia in gerbils. Ann. Neurol. 43, 654-660. https://doi.org/10.1002/ana.410430515
  207. Ross, D. T. and Duhaime, A. C. (1989) Degeneration of neurons in the thalamic reticular nucleus following transient ischemia due to raised intracranial pressure: excitotoxic degeneration mediated via non-NMDA receptors. Brain Res. 501, 129-143. https://doi.org/10.1016/0006-8993(89)91034-2
  208. Rothman, S. M., Yamada, K. A. and Lancaster, N. (1993) Nordihydroguaiaretic acid attenuates NMDA neurotoxicity--action beyond the receptor. Neuropharmacology 32, 1279-1288. https://doi.org/10.1016/0028-3908(93)90022-U
  209. Ryu, B., Kim, E. Y. and Gwag B. J. (1998) Oxidative stress is not required for neuronal apoptosis in cortical cell cultures, presented at 28th Annual Meeting of Society for Neuroscience, LA.
  210. Sairanen, T., Ristimaki, A., Karjalainen-Lindsberg, M. L., Paetau, A., Kaste, M. and Lindsberg, P. J. (1998) Cyclooxygenase-2 is induced globally in infracted human brain. Ann. Neurol. 43, 738-747. https://doi.org/10.1002/ana.410430608
  211. Saluja, I., Song, D., O'Regan, M. H. and Phillis, J. W. (1997) Role of phospholipase A2 in the release of free fatty acids during ischemia-reperfusion in the rat cerebral cortex. Neurosci. Lett. 233,97-100. https://doi.org/10.1016/S0304-3940(97)00646-0
  212. Samdani, A. F., Dawson, T. M. and Dawson, V. L. (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28, 1283- 1288. https://doi.org/10.1161/01.STR.28.6.1283
  213. Sanfeliu, C., Hunt, A. and Patel, A. J. (1990) Exposure to N-methyl- D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 526, 241-248. https://doi.org/10.1016/0006-8993(90)91228-9
  214. Sapirstein, A. and Bonventre, J. V. (2000) Phospholipases A2 in ischemic and toxic brain injury. Neurochem. Res. 25, 745-753. https://doi.org/10.1023/A:1007583708713
  215. Schulz, J. B., WelIer, M., Matthews, R. T., Heneka, M. T., Groscurth, P., Martinou, J. C., Lommatzsch, J., von Coelln, R., Wullner, U., Loschmann, P. A., Beal, M. F., Dichgans, J. and Klockgether, T. (1998) Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death. Differ. 5, 847-857. https://doi.org/10.1038/sj.cdd.4400420
  216. Schwarzschild, M. A., Cole, R. L., Meyers, M. A. and Hyman, S. E. (1999) Contrasting calcium dependencies of SAPK and ERK activations by glutamate in cultured striatal neurons. J. Neurochem 72, 2248-2255. https://doi.org/10.1046/j.1471-4159.1999.0722248.x
  217. Schweizer, M. and Richter, C. (1994) Gliotoxin stimulates $Ca^{2+}$release from intact rat liver mitochondria. Biochemistry 33, 13401-13405. https://doi.org/10.1021/bi00249a028
  218. Sensi, S. L., Canzoniero, L. M., Yu, S. P., Ying, H. S., Koh, J. Y., Kerchner, G. A. and Choi, D. W. (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17, 9554-9564. https://doi.org/10.1523/JNEUROSCI.17-24-09554.1997
  219. Sensi, S. L., Ym, H. Z., Carriedo, S. G., Rao, S. S. and Weiss, J. H. (1999) Preferential $Zn^{2+}$ influx through $Ca^{2+}$-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. USA 96, 2414- 2419. https://doi.org/10.1073/pnas.96.5.2414
  220. Seo, S. Y., Kim, E. Y., Kim, H. and Gwag, B. J. (1999) Neuroprotective effect of high glucose against NMDA, free radical, and oxygen-glucose deprivation through enhanced mitochondrial potentials. J. Neurosci. 19, 8849-8855.
  221. Seubert, P., Larson, J., Oliver, M., Jung, M. W., Baudry, M. and Lynch, G. (1988) Stimulation of NMDA receptors induces proteolysis of spectrin in hippocampus. Brain Res. 460, 189- 194. https://doi.org/10.1016/0006-8993(88)91222-X
  222. Sevanian, A., Muakkassah-Kelly, S. F. and Montestruque, S. (1983) The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Arch. Biochem Biophys. 223, 441-52. https://doi.org/10.1016/0003-9861(83)90608-2
  223. Shackelford, D. A., Yeh, R. Y., Hsu, M., Buzsaki, G. and Zivin, J. A. (1995) Effect of cerebral ischemia on calcium/calmodulin-dependent protein kinase II activity and phosphorylation. J. Cereb. Blood Flow Metab. 15, 450-461. https://doi.org/10.1038/jcbfm.1995.56
  224. Shapira, S., Kadar, T. and Weissman, B. A. (1994) Dose-dependent effect of nitric oxide synthase inhibition following transient forebrain ischemia in gerbils. Brain Res. 668, 80-84. https://doi.org/10.1016/0006-8993(94)90513-4
  225. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P. and Honore, T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinozaline: A neuroprotectant for cerebral ischemia. Science 247, 571-574. https://doi.org/10.1126/science.2154034
  226. Sheline, C. T., Behrens, M. M. and Choi, D. W. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J. Neurosci. 20, 3139-3146. https://doi.org/10.1523/JNEUROSCI.20-09-03139.2000
  227. Shigeno, T., Mirna, T., Takakura, K., Graham, D. I., Kato, G., Hashimoto, Y. and Furukawa S. (1991) Amelioration of delayed neuronal death in hippocampus by nerve growth factor. J. Neurosci. 11, 2914-2919. https://doi.org/10.1523/JNEUROSCI.11-09-02914.1991
  228. Shim, J. S., Lee, H. J., Park, S. S., Cha, B. G. and Chang, H. R. (2001) Curcumin-induced apoptosis of A-431 cells involves caspase-3 activation. J. Biochem. Mol. Biol. 34, 189-193.
  229. Siesjo, B. K., Katsura, K. I., Kristian, T., Li, P. A. and Siesjo, P. (1996) Molecular mechanisms of acidosis-mediated damage. Acta Neurochir. Suppl. (Wien.) 66, 8-14.
  230. Simon, R. P., Swan, J. H., Griffiths, T. and Meldrum, B. S. (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850-852. https://doi.org/10.1126/science.6093256
  231. Snider, B. J., Gottron, F. J. and Choi, D. W. (1999) Apoptosis and necrosis in cerebrovascular disease. Ann. N.Y. Acad. Sci. 893, 243-253. https://doi.org/10.1111/j.1749-6632.1999.tb07829.x
  232. Snider, W. D. (1994) Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77, 627-638. https://doi.org/10.1016/0092-8674(94)90048-5
  233. Sohn, S., Kim, E. Y. and Gwag, B. J. (1998) Glutamate neurotoxicity in mouse cortical neurons: a typical necrosis with DNA ladders and chromatin condensation. Neurosci. Lett. 240, 1-4. https://doi.org/10.1016/S0304-3940(97)00887-2
  234. Sorimachi, H., Ishiura, S. and Suzuki, K. (1997) Structure and physiological function of calpains. Biochem. J. 328, 721-732. https://doi.org/10.1042/bj3280721
  235. Srivastava, R. K., Sollott, S. J., Khan, L., Hansford, R., Lakatta, E. G. and Longo, D. L. (1999) Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminal kinase activity, and apoptosis. Mol. Cell BioI. 19, 5659-5674. https://doi.org/10.1128/MCB.19.8.5659
  236. Stagliano, N. E., Dietrich, W. D., Prado, R., Green, E. J. and Busto, R. (1997) The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res. 759, 32-40. https://doi.org/10.1016/S0006-8993(97)00200-X
  237. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E. and Reynolds, I. J. (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1, 366-373. https://doi.org/10.1038/1577
  238. Strasser, A., O'Connor, L. and Dixit, V. M. (2000) Apoptosis signaling. Annu. Rev. Biochem. 69,217-245. https://doi.org/10.1146/annurev.biochem.69.1.217
  239. Sucher, N. J., Awobuluyi, M., Choi, Y. B. and Lipton, S. A. (1996) NMDA receptors: from genes to channels. Trends. Phannacol. Sci. 17, 348-355. https://doi.org/10.1016/S0165-6147(96)10046-8
  240. Sugawara, T., Fujirnura, M., Morita-Fujirnura, Y., Kawase, M. and Chan, P. H. (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CAl neurons in rats after transient global cerebral ischemia. J. Neurosci. 19, RC39. https://doi.org/10.1523/JNEUROSCI.19-22-j0002.1999
  241. Sugino, T., Nozaki, K., Takagi, Y., Hattori, I., Hashimoto, N., Moriguchi, T. and Nishida, E. (2000) Activation of mitogenactivated protein kinases after transient forebrain ischemia in gerbil hippocampus. J. Neurosci. 20,4506-4514. https://doi.org/10.1523/JNEUROSCI.20-12-04506.2000
  242. Suh, S. W., Chen, J. W., Motamedi, M., Bell, B., Listiak, K., Pons, N. F., Danscher, G. and Frederickson, C. J. (2000) Evidence that synoptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 852, 268-273. https://doi.org/10.1016/S0006-8993(99)02095-8
  243. Taglialatela, G., Robinson, R. and Perez-Polo, J. R. (1997) Inhibition of nuclear factor kappa B (NFkappaB) activity induces nerve growth factor-resistant apoptosis in PCl2 cells. J. Neurosci. Res. 47, 155-162. https://doi.org/10.1002/(SICI)1097-4547(19970115)47:2<155::AID-JNR4>3.0.CO;2-E
  244. Takadera, T., Matsuda, I. and Ohyashiki, T. (1999) Apoptotic cell death and caspase-3 activation induced by N-methyl-Daspartate receptor antagonists and their prevention by insul-inlike growth factor I. J. Neurochem. 73, 548-556. https://doi.org/10.1046/j.1471-4159.1999.0730548.x
  245. Takagi, K., Ginsberg, M. D., Globus, M. Y., Dietrich, W. D., Martinez, E., Kraydieh, S. and Busto, R. (1993) Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology. J. Cereb. Blood Flow Metab. 13, 575-585. https://doi.org/10.1038/jcbfm.1993.75
  246. Takehara, Y., Kanno, T., Yoshioka, T., Inoue, M. and Utsumi, K. (1995) Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch. Biochem. Biophys. 323, 27- 32. https://doi.org/10.1006/abbi.1995.0005
  247. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nirnnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A. and Davis, R. J. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874. https://doi.org/10.1126/science.288.5467.870
  248. Troy, C. M. and Shelanski, M. L. (1994) Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc. Natl. Acad. Sci. USA 91, 6384- 6387. https://doi.org/10.1073/pnas.91.14.6384
  249. van Lookeren, C., Thibodeaux, H., van Bruggen, N., Cairns, B., Gerlai, R., Palmer, J. T., Williams, S. P and Lowe, D. G. (1999) Evidence for a protective role of metallothionein-1 in focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 12870- 12875. https://doi.org/10.1073/pnas.96.22.12870
  250. Vanhoutte, P., Bamier, J. V., Guibert, B., Pages, C., Besson, M. J., Hipskind, R. A. and Caboche, J. (1999) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol. Cell BioI. 19, 136-146 https://doi.org/10.1128/MCB.19.1.136
  251. Velier, J. J., Ellison, J. A., KikIy, K. K., Spera, P. A., Barone, F. C. and Feuerstein, G. Z. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19, 5932-5941.
  252. Wang, G. J., Randall, R. D. and Thayer, S. A. (1994) Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from $Ca^{2+}$ loads. J. Neurophysiol. 72, 2563-2569. https://doi.org/10.1152/jn.1994.72.6.2563
  253. Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F. and Reed, J. C. (1999) $Ca^{2+}$-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339-343. https://doi.org/10.1126/science.284.5412.339
  254. Wang, K. K. (2000) Calpain and caspase: can you tell the difference? Trends. Neurosci. 23, 20-26. https://doi.org/10.1016/S0166-2236(99)01479-4
  255. Wang, K. K, Roufogalis, B. D. and Villalobo, A. (1990) Calpain I activates $Ca^{2+}$ transport by the human erythrocyte plasma membrane calcium pump. Adv. Exp. Med. Biol. 269, 175-180. https://doi.org/10.1007/978-1-4684-5754-4_29
  256. Ward, M. W., Rego, A. C., Frenguelli, B. G. and Nicholls, D. G. (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20,7208-7219. https://doi.org/10.1523/JNEUROSCI.20-19-07208.2000
  257. Waxham, M. N., Grotta, J. C., Silva, A. J., Strong, R. and Aronowski, J. (1996) Ischemia-induced neuronal damage: a role for calcium/calmodulin-dependent protein kinase II. J. Cereb. Blood Flow Metab. 16, 1-6. https://doi.org/10.1097/00004647-199601000-00001
  258. Weiss, J. H., Turetsky, D., Wilke, G. and Choi, D. W. (1994) AMPA/kainate receptor-mediated damage to NADPH-diaphorase- containing neurons is $Ca^{2+}$ dependent. Neurosci. Lett. 167, 93-96. https://doi.org/10.1016/0304-3940(94)91035-9
  259. Welch, K. M. A., Caplan, L. R., Reis, D. J., Siesjo, S. K. and Weir, B. (1997) Primer on cerebrovascular diseases. San Diego, Academic Press.
  260. White, B. C., Krause, G. S., Aust, S. D. and Eyster, G. E. (1985) Postischemic tissue injury by iron-mediated free radical lipid peroxidation. Ann. Emerg. Med. 14,804-809. https://doi.org/10.1016/S0196-0644(85)80062-7
  261. White, R. J. and Reynolds, I. J. (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J. Neurosci. 16, 5688-5697. https://doi.org/10.1523/JNEUROSCI.16-18-05688.1996
  262. White, R. J. and Reynolds, I. J. (1997) Mitochondria accumulate $Ca^{2+}$ following intense glutamate stimulation of cultured rat forebrain neurons. J. Physiol. 498,31-47. https://doi.org/10.1113/jphysiol.1997.sp021839
  263. Whittemore, E. R., Loo, D. T., Watt, J. A. and Cotman, C. W. (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67, 921-932. https://doi.org/10.1016/0306-4522(95)00108-U
  264. Won, S. J., Ahn, Y. M. and Gwag, B. J. (2000) Activation of FADD and caspase-8 in ischemic cortical neurons following focal cerebral ischemia in rats, presented at 30th Annual Meeting of the Society for Neuroscience, New Orleans.
  265. Won, S. J., Ko, H. W., Kim, E. Y., Park, E. C., Huh, K., Jung, N. P., Choi, I., Oh, Y. K., Shin, H. C. and Gwag, B. J. (1999) Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus. Neuroscience 94, 83-91. https://doi.org/10.1016/S0306-4522(99)00196-7
  266. Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S. A., Senaldi, G., Howard, T., Lowe, S. W. and Mak, T. W. (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806-819. https://doi.org/10.1101/gad.12.6.806
  267. Wyllie, A. H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556. https://doi.org/10.1038/284555a0
  268. Wyllie, A. H., Morris, R. G., Smith, A. L. and Dunlop, D. (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142, 67-77. https://doi.org/10.1002/path.1711420112
  269. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  270. Xia, Z., Dudek, H., Miranti, C. K. and Greenberg, M. E. (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425-5436. https://doi.org/10.1523/JNEUROSCI.16-17-05425.1996
  271. Yan, Q., Elliott, J. and Snider, W. D. (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360, 753-755. https://doi.org/10.1038/360753a0
  272. Yerrnilov, V., Yoshie, Y., Rubio, J. and Ohshima, H. (1996) Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 399, 67-70. https://doi.org/10.1016/S0014-5793(96)01288-4
  273. Yoshida, T., Limrnroth, V., Irikura, K. and Moskowitz, M. A. (1994) The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb. Blood Flow Metab. 14, 924-929. https://doi.org/10.1038/jcbfm.1994.123
  274. Youdim, M. B., Ben-Shachar, D. and Riederer, P. (1993) The possible role of iron in the etiopathology of Parkinson's Disease. Mov. Disord. 8, 1-12. https://doi.org/10.1002/mds.870080102
  275. Yu, S. P, Yeh, C., Strasser, U., Tian, M. and Choi, D. W. (1999) NMDA receptor-mediated $K^+$ efflux and neuronal apoptosis. Science 284, 336-339. https://doi.org/10.1126/science.284.5412.336
  276. Zaleska, M. M. and Floyd, R. A. (1985) Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem. Res. 10,397-410. https://doi.org/10.1007/BF00964608
  277. Zhang, J., Dawson, V. L., Dawson, T. M. and Snyder, S. H. (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263, 687-689. https://doi.org/10.1126/science.8080500
  278. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. and Davies, K. J. (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. BioI. Chem. 265, 16330-16336.

Cited by

  1. Protective effect of treatment with low-dose gliclazide in a model of middle cerebral artery occlusion and reperfusion in rats vol.1560, 2014, https://doi.org/10.1016/j.brainres.2014.02.044
  2. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances vol.30, pp.12, 2009, https://doi.org/10.1016/j.neurobiolaging.2008.01.017
  3. EUK-207, a superoxide dismutase/catalase mimetic, is neuroprotective against oxygen/glucose deprivation-induced neuronal death in cultured hippocampal slices vol.1247, 2009, https://doi.org/10.1016/j.brainres.2008.10.016
  4. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion vol.1455, 2012, https://doi.org/10.1016/j.brainres.2012.03.025
  5. Platinum-Doped Ceria Based Biosensor forin Vitroandin VivoMonitoring of Lactate during Hypoxia vol.87, pp.5, 2015, https://doi.org/10.1021/ac5047455
  6. Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes vol.55, pp.9, 2007, https://doi.org/10.1002/glia.20513
  7. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke vol.182, pp.1, 2007, https://doi.org/10.1007/s00221-007-1050-9
  8. Changes in neuronal response to ischemia in retinas with genetic alterations of somatostatin receptor expression vol.25, pp.5, 2007, https://doi.org/10.1111/j.1460-9568.2007.05419.x
  9. Involvement of nitric oxide synthase and ROS-mediated activation of L-type voltage-gated Ca2+ channels in NMDA-induced DPYSL3 degradation vol.1119, pp.1, 2006, https://doi.org/10.1016/j.brainres.2006.08.047
  10. Effects of scutellarin on PKC? in PC12 cell injury induced by oxygen and glucose deprivation vol.28, pp.10, 2007, https://doi.org/10.1111/j.1745-7254.2007.00502.x
  11. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo vol.7, 2016, https://doi.org/10.3389/fphar.2016.00148
  12. Roles of individual prolyl-4-hydroxylase isoforms in the first 24 hours following transient focal cerebral ischaemia: insights from genetically modified mice vol.590, pp.16, 2012, https://doi.org/10.1113/jphysiol.2012.232884
  13. Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia vol.49, pp.2, 2010, https://doi.org/10.1016/j.freeradbiomed.2010.03.027
  14. Effects of desferoxamine-induced hypoxia on neuronal human mu-opioid receptor gene expression vol.398, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2010.06.032
  15. Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression vol.77, pp.4, 2011, https://doi.org/10.1016/j.mehy.2011.06.021
  16. Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats vol.22, pp.10, 2008, https://doi.org/10.1080/02699050802304706
  17. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures vol.1270, 2009, https://doi.org/10.1016/j.brainres.2009.03.006
  18. Manganese-enhanced magnetic resonance imaging of hypoxic–ischemic brain injury in the neonatal rat vol.45, pp.3, 2009, https://doi.org/10.1016/j.neuroimage.2008.12.007
  19. Role of iron in ischemia-induced neurodegeneration: mechanisms and insights vol.29, pp.3, 2014, https://doi.org/10.1007/s11011-014-9522-7
  20. Effect of tramadol on behavioral alterations and lipid peroxidation after transient forebrain ischemia in rats vol.22, pp.9, 2012, https://doi.org/10.3109/15376516.2012.716092
  21. Protein arginine methylation facilitates KCNQ channel-PIP2interaction leading to seizure suppression vol.5, 2016, https://doi.org/10.7554/eLife.17159
  22. mGluR1,5 activation protects cortical astrocytes and GABAergic neurons from ischemia-induced impairment vol.75, pp.2, 2013, https://doi.org/10.1016/j.neures.2012.12.002
  23. Generation of hydrogen peroxide mediates hanging death-induced neuronal cell apoptosis in the dentate gyrus of the rat brain vol.95, 2013, https://doi.org/10.1016/j.brainresbull.2013.03.002
  24. Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical Neurons vol.29, pp.8, 2009, https://doi.org/10.1007/s10571-009-9419-x
  25. 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia vol.66, pp.12, 2014, https://doi.org/10.1111/jphp.12295
  26. Chronic hypobaric hypoxia induced apoptosis in CA1 region of hippocampus: A possible role of NMDAR mediated p75NTR upregulation vol.212, pp.1, 2008, https://doi.org/10.1016/j.expneurol.2008.01.030
  27. Kainate-Mediated Excitotoxicity Induces Neuronal Death in the Rat Spinal Cord In Vitro via a PARP-1 Dependent Cell Death Pathway (Parthanatos) vol.30, pp.7, 2010, https://doi.org/10.1007/s10571-010-9531-y
  28. Perspective of synaptic protection after post-infarction treatment with statins vol.13, pp.1, 2015, https://doi.org/10.1186/s12967-015-0472-6
  29. Effect of the inhibitory neurotransmitter glycine on slow destructive processes in brain cortex slices under anoxic conditions vol.72, pp.5, 2007, https://doi.org/10.1134/S0006297907050070
  30. Mechanisms of vincristine-induced neurotoxicity: Possible reversal by erythropoietin vol.5, pp.3, 2011, https://doi.org/10.5582/ddt.2011.v5.3.136
  31. Association analysis of chromosome 1 migraine candidate genes vol.8, pp.1, 2007, https://doi.org/10.1186/1471-2350-8-57
  32. Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1α truncation vol.218, pp.1, 2009, https://doi.org/10.1016/j.expneurol.2009.04.006
  33. Increased expression of the hypoxia-related genes in peripheral blood leukocytes of human subjects with acute ischemic stroke vol.5, pp.2, 2014, https://doi.org/10.1111/cen3.12104
  34. Proteomic Analysis of Mouse Hypothalamus under Simulated Microgravity vol.33, pp.11, 2008, https://doi.org/10.1007/s11064-008-9738-1
  35. Hypoxic ischemia and proteasome dysfunction alter tau isoform ratio by inhibiting exon 10 splicing 2010, https://doi.org/10.1111/j.1471-4159.2010.06732.x
  36. Hypoxia-induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: Neuroprotection by acetyl-L-carnitine vol.86, pp.12, 2008, https://doi.org/10.1002/jnr.21722
  37. Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS vol.27, pp.1, 2007, https://doi.org/10.1111/j.1460-9568.2007.05995.x
  38. Oxidative modification of M-type K+ channels as a mechanism of cytoprotective neuronal silencing vol.25, pp.20, 2006, https://doi.org/10.1038/sj.emboj.7601374
  39. Amelioration of cerebral infarction and improvement of neurological deficit by a Korean herbal medicine, modified Bo-Yang-Hwan-O-Tang vol.63, pp.5, 2011, https://doi.org/10.1111/j.2042-7158.2011.01254.x
  40. Role of KATPchannels in protection against neuronal excitatory insults vol.103, pp.5, 2007, https://doi.org/10.1111/j.1471-4159.2007.04963.x
  41. Anti-apoptotic Effect of Taxodione on Serum/Glucose Deprivation-Induced PC12 Cells Death vol.34, pp.8, 2014, https://doi.org/10.1007/s10571-014-0085-2
  42. Cortical plasticity is preserved in nondemented older individuals with severe ischemic small vessel disease vol.34, pp.6, 2013, https://doi.org/10.1002/hbm.22003
  43. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis vol.98, pp.3, 2015, https://doi.org/10.1016/j.yexmp.2015.04.002
  44. P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury vol.26, pp.8, 2009, https://doi.org/10.1089/neu.2008.0811
  45. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage vol.5, pp.1, 2015, https://doi.org/10.1016/j.apsb.2014.11.002
  46. PET Imaging of Hypoxia vol.4, pp.1, 2009, https://doi.org/10.1016/j.cpet.2009.05.009
  47. Protective effects of edaravone against cobalt chloride-induced apoptosis in PC12 cells vol.25, pp.2, 2009, https://doi.org/10.1007/s12264-009-1215-6
  48. Guattegaumerine Protects Primary Cultured Cortical Neurons Against Oxidative Stress Injury Induced by Hydrogen Peroxide Concomitant with Serum Deprivation vol.29, pp.3, 2009, https://doi.org/10.1007/s10571-008-9327-5
  49. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria vol.7, pp.9, 2006, https://doi.org/10.1631/jzus.2006.B0749
  50. Non-selective cation channels, transient receptor potential channels and ischemic stroke vol.1772, pp.8, 2007, https://doi.org/10.1016/j.bbadis.2007.03.004
  51. The central nervous system cytokine response to global ischemia following resuscitation from ventricular fibrillation in a porcine model vol.80, pp.2, 2009, https://doi.org/10.1016/j.resuscitation.2008.08.018
  52. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia vol.20, pp.11, 2016, https://doi.org/10.1089/omi.2016.0112
  53. NR1 and GluR2 expression mediates excitotoxicity in chronic hypobaric hypoxia vol.86, pp.5, 2008, https://doi.org/10.1002/jnr.21554
  54. Effect of astrocyte-targeted production of IL-6 on traumatic brain injury and its impact on the cortical transcriptome vol.68, pp.2, 2008, https://doi.org/10.1002/dneu.20584
  55. Acupuncture to point Baihui prevents ischemia-induced functional impairment of cortical GABAergic neurons vol.307, pp.1-2, 2011, https://doi.org/10.1016/j.jns.2011.04.021
  56. Delayed posthypoxic leukoencephalopathy: a case series and review of the literature vol.5, pp.8, 2015, https://doi.org/10.1002/brb3.364
  57. Pharmacotherapy of neurological complications after cardiac surgery vol.9, pp.1, 2016, https://doi.org/10.17116/kardio20169120-24
  58. The role of glutamate in neuronal ischemic injury: the role of spark in fire vol.33, pp.2, 2012, https://doi.org/10.1007/s10072-011-0828-5
  59. Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion vol.147, pp.1, 2014, https://doi.org/10.1016/j.jtcvs.2013.07.043
  60. Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia vol.394, pp.3, 2010, https://doi.org/10.1016/j.bbrc.2010.03.056
  61. Calcium ions in neuronal degeneration vol.60, pp.9, 2008, https://doi.org/10.1002/iub.91
  62. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons vol.53, pp.6-8, 2008, https://doi.org/10.1016/j.neuint.2008.08.003
  63. Modulation of the neuronal response to ischaemia by somatostatin analogues in wild-type and knock-out mouse retinas vol.106, pp.5, 2008, https://doi.org/10.1111/j.1471-4159.2008.05556.x
  64. Alcohol-Induced Exacerbation of Ischemic Brain Injury: Role of NAD(P)H Oxidase vol.34, pp.11, 2010, https://doi.org/10.1111/j.1530-0277.2010.01284.x
  65. Protective effects of ginsenoside Rb3 on oxygen and glucose deprivation-induced ischemic injury in PC12 cells vol.31, pp.3, 2010, https://doi.org/10.1038/aps.2010.9
  66. Bakkenolide-IIIa Protects Against Cerebral Damage Via Inhibiting NF-κB Activation vol.21, pp.12, 2015, https://doi.org/10.1111/cns.12470
  67. Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: A biochemical approach vol.51, pp.6-7, 2007, https://doi.org/10.1016/j.neuint.2007.04.003
  68. Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions* vol.38, pp.11, 2010, https://doi.org/10.1097/CCM.0b013e3181f26b0c
  69. Glutamate Excitotoxicity Mediates Neuronal Apoptosis After Hypothermic Circulatory Arrest vol.89, pp.2, 2010, https://doi.org/10.1016/j.athoracsur.2009.10.059
  70. Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia vol.89, pp.4, 2008, https://doi.org/10.1016/j.nlm.2008.01.003
  71. Proteomic analysis and brain-specific systems biology in a rodent model of penetrating ballistic-like brain injury vol.33, pp.24, 2012, https://doi.org/10.1002/elps.201200196
  72. Superoxide dismutase/catalase mimetics but not MAP kinase inhibitors are neuroprotective against oxygen/glucose deprivation-induced neuronal death in hippocampus vol.103, pp.6, 2007, https://doi.org/10.1111/j.1471-4159.2007.04906.x
  73. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice vol.27, pp.7, 2016, https://doi.org/10.1097/FBP.0000000000000256
  74. Gastrodia elata Blume and an Active Component, p-Hydroxybenzyl Alcohol Reduce Focal Ischemic Brain Injury through Antioxidant Related Gene Expressions vol.28, pp.6, 2005, https://doi.org/10.1248/bpb.28.1016
  75. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia vol.85, pp.9, 2007, https://doi.org/10.1002/jnr.21322
  76. Neurometabolic and structural alterations in rat brain due to acute hypobaric hypoxia:in vivo1H MRS at 7 T vol.27, pp.3, 2014, https://doi.org/10.1002/nbm.3068
  77. Neuroprotective effects of ebselen are associated with the regulation of Bcl-2 and Bax proteins in cultured mouse cortical neurons vol.399, pp.3, 2006, https://doi.org/10.1016/j.neulet.2006.02.024
  78. Iron mediates endothelial cell damage and blood-brain barrier opening in the hippocampus after transient forebrain ischemia in rats vol.43, pp.2, 2011, https://doi.org/10.3858/emm.2011.43.2.020
  79. Protective Effects of Total Flavones of Rhododendra against Global Cerebral Ischemia Reperfusion Injury vol.37, pp.05, 2009, https://doi.org/10.1142/S0192415X09007284
  80. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells vol.18, pp.1, 2017, https://doi.org/10.3390/ijms18010211
  81. Thrombin potentiates d-aspartate efflux from cultured astrocytes under conditions of K+homeostasis disruption vol.111, pp.6, 2009, https://doi.org/10.1111/j.1471-4159.2009.06418.x
  82. A Role for Excitatory Amino Acids in Diabetic Eye Disease vol.2007, 2007, https://doi.org/10.1155/2007/36150
  83. Does Early Postresuscitation Stress Hyperglycemia Affect 72-Hour Neurologic Outcome? Preliminary Observations in the Swine Model vol.15, pp.3, 2011, https://doi.org/10.3109/10903127.2011.569847
  84. NMDA receptor dysregulation in chronic state: A possible mechanism underlying depression with BDNF downregulation vol.79, 2014, https://doi.org/10.1016/j.neuint.2014.09.007
  85. Hypoxia-specific gene expression for ischemic disease gene therapy vol.61, pp.7-8, 2009, https://doi.org/10.1016/j.addr.2009.04.009
  86. Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression vol.118, pp.1-3, 2010, https://doi.org/10.1016/j.schres.2009.12.027
  87. Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures vol.13, pp.4, 2013, https://doi.org/10.4110/in.2013.13.4.141
  88. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke vol.12, pp.3, 2017, https://doi.org/10.4103/1673-5374.202915
  89. Study of rat hypothalamic proteome by HPLC/ESI ion trap and HPLC/ESI-Q-TOF MS vol.13, pp.16, 2013, https://doi.org/10.1002/pmic.201300073
  90. Apoptosis in tissues from fatal dengue shock syndrome vol.40, pp.1, 2007, https://doi.org/10.1016/j.jcv.2007.04.024
  91. Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists vol.1148, 2007, https://doi.org/10.1016/j.brainres.2007.02.027
  92. Hippocalcin protects hippocampal neurons against excitotoxin damage by enhancing calcium extrusion vol.145, pp.2, 2007, https://doi.org/10.1016/j.neuroscience.2006.12.011
  93. The neuroprotective effect of intranasally applied leptin against hypoxic neuronal injury vol.74, pp.6, 2010, https://doi.org/10.1016/j.mehy.2009.12.033
  94. Probing the molecular mechanisms of neuronal degeneration: importance of mitochondrial dysfunction and calcineurin activation vol.22, pp.3, 2008, https://doi.org/10.1007/s00540-008-0617-3
  95. What you eat is what you are – A role for polyunsaturated fatty acids in neuroinflammation induced depression? vol.30, pp.4, 2011, https://doi.org/10.1016/j.clnu.2011.03.013
  96. Cell death in the injured brain: Roles of metallothioneins vol.44, pp.1, 2009, https://doi.org/10.1016/j.proghi.2008.10.002
  97. Beneficial Effects of Antecedent Exercise Training on Limb Motor Function and Calpain Expression in a Rat Model of Stroke vol.25, pp.8, 2013, https://doi.org/10.1589/jpts.25.943
  98. The inflammatory footprints of alcohol-induced oxidative damage in neurovascular components vol.25, 2011, https://doi.org/10.1016/j.bbi.2011.01.007
  99. A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation vol.34, pp.7, 2013, https://doi.org/10.1007/s10072-012-1220-9
  100. Distortion of homeostatic signaling proteins by simulated microgravity in rat hypothalamus: A16O/18O-labeled comparative integrated proteomic approach vol.14, pp.2-3, 2014, https://doi.org/10.1002/pmic.201300337
  101. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability vol.15, pp.5, 2015, https://doi.org/10.1016/j.spinee.2015.02.003
  102. L-theanine Administration Results in Neuroprotection and Prevents Glutamate Receptor Agonist-Mediated Injury in the Rat Model of Cerebral Ischemia-Reperfusion vol.27, pp.9, 2013, https://doi.org/10.1002/ptr.4868
  103. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101716
  104. GLAST1b, the exon-9 skipping form of the glutamate-aspartate transporter EAAT1 is a sensitive marker of neuronal dysfunction in the hypoxic brain vol.149, pp.2, 2007, https://doi.org/10.1016/j.neuroscience.2007.08.011
  105. Involvement of Ca2+- and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells vol.85, pp.4, 2007, https://doi.org/10.1002/jnr.21190
  106. Quercetin, kaempferol and biapigenin fromhypericum perforatum are neuroprotective against excitotoxic insults vol.13, pp.3-4, 2008, https://doi.org/10.1007/BF03033510
  107. Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction vol.14, pp.7, 2007, https://doi.org/10.1038/sj.cdd.4402141
  108. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus vol.26, pp.1, 2013, https://doi.org/10.1007/s10534-012-9593-z
  109. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2 vol.46, pp.1, 2012, https://doi.org/10.1016/j.nbd.2012.01.006
  110. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis vol.347, pp.1-2, 2014, https://doi.org/10.1016/j.jns.2014.10.009
  111. Autocrine signaling involved in cell volume regulation: The role of released transmitters and plasma membrane receptors vol.216, pp.1, 2008, https://doi.org/10.1002/jcp.21406
  112. Increased vulnerability of hippocampal neurons with age in culture: Temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels vol.1151, 2007, https://doi.org/10.1016/j.brainres.2007.03.020
  113. Dysregulation Induce Premature Aging? vol.23, pp.6, 2008, https://doi.org/10.1152/physiol.00023.2008
  114. Nicotinic acetylcholine receptor expression and regulation in the rat kidney after ischemia-reperfusion injury vol.295, pp.3, 2008, https://doi.org/10.1152/ajprenal.90255.2008