DOI QR코드

DOI QR Code

A Novel Anticoagulant Protein from Scapharca broughtonii

  • Jung, Won-Kyo (Department of Chemistry, Pukyong National University) ;
  • Je, Jae-Young (Department of Chemistry, Pukyong National University) ;
  • Kim, Hee-Ju (Department of Chemistry, Pukyong National University) ;
  • Kim, Se-Kwon (Department of Chemistry, Pukyong National University)
  • Published : 2002.03.31

Abstract

An anticoagulant protein was purified from the edible portion of a blood ark shell, Scapharca broughtonii, by ammonium sulfate precipitation and column chromatography on DEAE-Sephadex A-50, Sephadex G-75, DEAE-Sephacel, and Biogel P-l00. In vitro assays with human plasma, the anticoagulant from 'S. broughtonii, prolonged the activated partial thromboplastin time (APTT) and inhibited the factor LX in the intrinsic pathway of the blood coagulation cascade. But, the fibrin plate assay did not show that the anticoagulant is a fibrinolytic protease. The molecular mass of the purified S. broughtonii anticoagulant was measured to be about 26.0kDa by gel filtration on a Sephadex G-75 column and SDS-PAGE under denaturing conditions. The optimum activity in the APTT assay was exhibited at pH 7.0-7.5 and $40-45^{\circ}C$ in the presence of $Ca^{2+}$.

Keywords

References

  1. Apitz-Castro, R., Beguin, S., Tablante, A., Bartoli, F., Holt, J. C. and Hemker, H. C. (1995) Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmodus rotundus). Thromb. Haemost. 73, 94-100.
  2. Atoda, H. and Morita, T. (1989) A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (halm snake): Isolation and characterization. J. Biochem. 106, 808-813. https://doi.org/10.1093/oxfordjournals.jbchem.a122935
  3. Atoda, H., Ishikawa, M., Mizuno, H. and Morita, T. (1998) Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a gla domain-binging protein. Biochemistry 37, 17361-17370. https://doi.org/10.1021/bi981177x
  4. Broze, G. J. Jr., Girard, T. J. and Novotny, W. F. (1990) Regulation of coagUlation by a multivalent Kunitz-type inhibitor. Biochemistry 29, 7539-7546. https://doi.org/10.1021/bi00485a001
  5. Changaff, E., Bancroft F. W. and Stanley-Brown, M. (1936) Studies of chemistry of blood coagUlation II. On the inhibition of clotting by substances of high molecular weight. J. BioI. Chem. 115, 155-161.
  6. Davie, E. W. and Ratnoff, O. D. (1964) Waterfall Sequence for Intrinsic Blood Clotting. Science 145, 1310-1312. https://doi.org/10.1126/science.145.3638.1310
  7. Davie, E. W., Fujikawa, K. and Kisiel, W. (1991) The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30, 10363-10370. https://doi.org/10.1021/bi00107a001
  8. Dubois, M., Gilles, K. A., Hamilton, J. K., Revers, P. A. and Smith, F. (1956) New colorimetric methods of sugar analysis. The phenol-sulfuric acid reaction for carbohydrates. Anal. Chem. 28, 350-356. https://doi.org/10.1021/ac60111a017
  9. Esmon, C. T. (2000) Regulation of blood coagulation. Biochim. Biophys. Acta 1477, 349-360. https://doi.org/10.1016/S0167-4838(99)00266-6
  10. Garfin, D. (1990) One-dimensional gel electrophoresis. Methods Enzymol. 182, 425-441. https://doi.org/10.1016/0076-6879(90)82035-Z
  11. Grey, S. V. and Meyer, B. J. (1988) in The Physiological Basis of Medicine, Meyer, B. J. (eds.), pp. 27.1-27.16, HAUM Publishing, Pretoria (in Afrikaans).
  12. Guyton, A. C. (1982) Human Physiology and Mechanisms of Disease, 3rd ed., W. B. Saunders Company, Philadelphia, Pensylvania.
  13. Jeon, O.-H., Moon, W.-J. and Kim, D.-S. (1995) An anticoagulant/ fibrinolytic protease from Lumbricus rubellus. J. Biochem. Mol. Biol. 28, 138-142.
  14. Jespersen, J. and Astrup, T. (1983) A study of the fibrin plate assay of fibrinolytic agents. Optimal conditions, reproducibility and precision. Haemostasis 13, 301-15.
  15. Jurd, K. M., Rogers, K. J., Blunden, G. and McLellan, D. S. (1995) Anticoagulant properties of sulphated polysaccharides and a proteoglycan from Codium fragile ssp. Atlanticum. J. Appl. Phycol. 7, 339-345. https://doi.org/10.1007/BF00003790
  16. Kim, G.-M., Yu, K.-H., Woo, J.-I., Bahk, Y.-K., Paik, S.-R., Kim, J.-G. and Chang, C.-S. (1999) A study of the anticoagulatory DNA from the earthworm, Lumbricus rubellus, and its regulatory DNA-binding protein. J. Biochem. Mol. BioI. 32, 567-572.
  17. Kindness, G., Williamson, F. B. and Long, W. F. (1980) Involvement of antithrombin III in anticoagulant effects of sulphated polysaccharides. Biochem. Soc. Trans. 8, 82-83. https://doi.org/10.1042/bst0080082
  18. Laemmli, U. K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  19. Lee, K.-H., Choi, B.-D., Hong, B.-I., Jung, B.-C., Ruck, J.-H. and Jung, W.-J. (1998) Functional properties of sulfated polysaccharides in ascidian (Halocynthia roretzi) tunic. J. Korean Fish. Soc. 31, 447-451.
  20. Lowry, O. H., Rosebrough, A. L. Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin-phenol reagent. J. BioI. Chem. 193, 165-275.
  21. MacFarlane, R. G. (1964) An Enzyme Cascade in the Blood Clotting Mechanism and its Function as a Biochemical Amplifier. Nature 202, 498-499. https://doi.org/10.1038/202498a0
  22. Maimone, M. M. and Tollefsen, D. M. (1990) Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J. BioI. Chem. 265, 18263-18271.
  23. McLellan, D. S. and Jurd, K. M. (1991) Anticoagulants from marine algae. Blood Coagulation and Fibrinolysis 3, 69-77.
  24. Seegers, W. H. (1964) in Blood coagUlation, Hemorrhage and Thrombosis. Tocantins, L. M. and Kazal, L. A. (eds.), pp. 181-187, Grune & Stratton, New York, New York.
  25. Spencer, R. L. and Wold, F. (1969) A new convenient method for estimation of total cystine-cysteine in proteins, Anal. Biochem. 32, 185-190. https://doi.org/10.1016/0003-2697(69)90123-7
  26. Waidhet-Kauadio, P., Yuda, M., Ando, K. and Chinzei, Y. (1998) Purification and characterization of a thrombin inhibitor from the salivary glands of a malarial vector mosquito, Anopheles stephensi. Biochim. Biophys. Acta 1381, 227-233. https://doi.org/10.1016/S0304-4165(98)00026-9
  27. Woo, J.-I., Bahk, Y.-K., Yu, S.-R., Paik, S.-R. and Chang, C.-S. (1996) Evidence for existence of a water-extractable anticoagulant in an earthworm, Lumbricus rubellus. J. Biochem. Mol. BioI. 29, 500-506.

Cited by

  1. Effects of temperature and salinity on survival and growth of juvenile ark shell Anadara broughtonii vol.83, pp.4, 2017, https://doi.org/10.1007/s12562-017-1095-z
  2. Potential antithrombotic activity detected in amaranth proteins and its hydrolysates vol.60, pp.1, 2015, https://doi.org/10.1016/j.lwt.2014.07.015
  3. Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni vol.8, pp.1, 2015, https://doi.org/10.1186/s13071-015-1022-z
  4. Purification and characterization of a new lectin from the hard roe of skipjack tuna, Katsuwonus pelamis vol.35, pp.2, 2003, https://doi.org/10.1016/S1357-2725(02)00176-0
  5. Inhibition of mouse macrophages interleukin-12 production : Suppression of nuclear factor-κB binding activity by a specific factor isolated fromscapharca broughtonii vol.30, pp.3, 2007, https://doi.org/10.1007/BF02977617
  6. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae vol.84, pp.1, 2011, https://doi.org/10.1016/j.carbpol.2010.10.062
  7. Development and biological activities of marine-derived bioactive peptides: A review vol.2, pp.1, 2010, https://doi.org/10.1016/j.jff.2010.01.003
  8. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus vol.43, pp.2, 2008, https://doi.org/10.1016/j.procbio.2007.11.011
  9. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation vol.76, pp.22, 2005, https://doi.org/10.1016/j.lfs.2004.12.010
  10. A novel coagulation inhibitor from Schistosoma japonicum vol.142, pp.14, 2015, https://doi.org/10.1017/S0031182015001328
  11. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery vol.50, 2016, https://doi.org/10.1016/j.tifs.2016.01.019
  12. A new exogen anticoagulant with high selectivity to intrinsic pathway of coagulation vol.128, pp.4, 2011, https://doi.org/10.1016/j.thromres.2011.06.005
  13. Bio-functionalities of proteins derived from marine algae — A review vol.48, pp.2, 2012, https://doi.org/10.1016/j.foodres.2012.03.013
  14. Bioactive peptides from marine processing waste and shellfish: A review vol.4, pp.1, 2012, https://doi.org/10.1016/j.jff.2011.09.001
  15. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava vol.66, pp.2, 2006, https://doi.org/10.1016/j.carbpol.2006.03.002
  16. ENHANCEMENT OF 1,25-DIHYDROXYVITAMIN D3- AND ALL-TRANS RETINOIC ACID-INDUCED DIFFERENTIATION OF HUMAN LEUKEMIA HL-60 CELLS BY BLOOD SHELL, SCAPHARCA BROUGHTONII vol.32, pp.1, 2008, https://doi.org/10.1111/j.1745-4514.2007.00149.x
  17. Separation of Iron-Binding Peptides from Shrimp Processing By-products Hydrolysates vol.4, pp.8, 2011, https://doi.org/10.1007/s11947-010-0416-3
  18. A New in Vitro Anti-Tumor Polypeptide Isolated from Arca inflata vol.11, pp.12, 2013, https://doi.org/10.3390/md11124773
  19. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus vol.136, 2008, https://doi.org/10.1016/j.jbiotec.2008.07.1243
  20. Stimulation of Interleukin-4 Production in EL4 T Cells via Increased NF-AT Binding Activity by Scapharca broughtonii vol.27, pp.2, 2008, https://doi.org/10.2983/0730-8000(2008)27[413:SOIPIE]2.0.CO;2
  21. ) protein pp.2042-650X, 2018, https://doi.org/10.1039/C8FO01635F
  22. Focalization of thrombosis and therapeutic perspectives: a memoir vol.18, pp.4, 2018, https://doi.org/10.1007/s13596-018-0331-0