콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도

Strength of Square Shaped CFT Stub Column Considering the Confining Effect of Concrete

황 원 섭1) - 김 동 조2)

Hwang, Won Sup Kim, Dong Jo

Abstract

요 약: 단주영역에서 정사각형 콘크리트 충전 강관기둥의 단순 누가강도, 설계식 강도는 실혐강도에 비해 약간 과소하게 평가하고 있다. 따라서 본 논문은 주요 요인이 되는 콘크리트의 구속효과를 고려하여 평가하고자 하였다. 콘크리트의 구속효과를 검토하기 위해 3 차원 유한요 소모델을 사용하여 강관의 폭두께비 (b / t), 콘크리트의 압축강도 $\left(f_{c}^{\prime}\right)$. 강재의 항복응력 $\left(f_{y}\right)$ 에 따른 영향을 검토하였고 이 세 변수를 조합 한 제안된 강도식은 기존의 실험값과 비교, 검토되었다. 또한 하중 재하상태에 따른 콘크리트의 구속효과도 살펴 보았다. ABSTRACT:The squash strength and design strength are smaller than the experimental strength of square shaped concrete-filled steel tubular columns in a short concentrically loaded column. This study presents an evaluation procedure accounting for the confining effect of concrete. For the purpose of evaluating a confining effect of concrete, the 3D finite element method was used. The influence of parameters, width-thickness ratios, strength of the concrete and the yield strength of the steel, were examined. The suggested evaluation procedure that assembled three parameters was compared with previous experimental results. Also, the tendency of the confining effect of concrete was examined in the three types of load application.

핵 심 용 어 : 콘크리트 충전 강관기등, 콘크리트 구속효과, 평균구속응력
KEYWORDS : concrete-filled steel tubular, confining effect of concrete, average confining stress

1. 서 론

최근 국내외에서는 강관기둥에 콘크리트를 충전하는 이른 바 콘크리트 충전 강관(CFT)기둥의 사용이 증가하는 추세에 있다. 이러한 콘크리트 충전 강관기둥의 특징으로서는 강도상 승효과는 물론 내진성능과 밀접한 관련이 있는 변형성능 및 에너지 홉수능력 등이 우수하다는 점을 들 수 있다. 일반적으 로 콘크리트 충전 강관기둥은 강관기둥에 비하여 콘크리트와 강관사이의 상호작용과 내부 콘크리트의 구속효과로 인하여 압축 및 연성능력이 증가하는 것으로 알려져 있다. 또한 내부 충전 콘크리트는 강관의 국부좌굴에 대한 보강효과를 나타내 어 기둥의 내하력을 증가시키게 된다. 그러나 기존의 콘크리 트 충전 강관기둥의 강도평가에 있어서는 콘크리트의 횡방향

[^0]변형이 구속되어 발생하는 효과를 적절히 반영하지 못하고 있다고 할 수 있다. 따라서 본 연구에서는 정사각형 단면의 콘크리트 충전 단주를 대상으로 FEM 해석을 수행하여 콘크 리트 충전 강관기둥에서의 콘크리트의 구속효과에 대하여 검 토하였다. 여기서는 단면의 폭두께비 (b / t) 와 콘크리트의 일 축압축강도 $\left(f_{c}^{\prime}\right)$, 강재의 항복응력 $\left(f_{y}\right)$ 의 영향을 고려한 평균 구속응력 산정식에 대하여 검토한 후 이를 고려한 콘크리트 충전 강관기둥의 강도평가식을 제안하였다.

2. 기존의 연구

콘크리트 충전 강관기둥의 강도특성에 관한 종래의 연구에 서는 주로 기둥의 세장비, 단면형상 및 폭두께비 등의 영향에

본 논문에 대한 토의를 2003년 6월 30 일까지 학희로 보내주시면 토의 회답을 게재하겠습니다.

관한 검토가 이루어져 왔다. 특히 Knowles ${ }^{(1)}$ 와 Sugano ${ }^{(2)}$ 등 은 정사각형 및 원형단면에 관한 실험결과로부터 세장비가 작은 콘크리트 충전 강관기둥의 강도는 강관의 구속효과에 의한 콘크리트 압축강도의 상숭으로 인하여 증가하게 된다는 것을 나타내었다. 콘크리트 충전 강관기둥의 강도를 평가하기 위해서 Kato ${ }^{(3)}$ 는 아래의 식(1)과 같은 단순누가강도 (section strength) P_{y} 를 이용하여 ECCS-b곡선에 의한 콘크리트 충전 강관기둥의 평가식을 제안하였다.

$$
\begin{equation*}
P_{y}=f_{y} A_{s}+\beta f_{c}^{\prime} A_{c} \tag{1}
\end{equation*}
$$

여기서, $\beta=1.0$: 사각형 단면인 경우
$\beta=1.1$: 원형 단면인 경우
한편 AISC-LRFD 설계법에서는 콘크리트 충전 강관기둥 의 누가강도를 다음과 같이 구하고 있다.

$$
\begin{equation*}
P_{y}=f_{y} A_{s}+0.85 f_{c}^{\prime} A_{c} \tag{2}
\end{equation*}
$$

그러나 세장비가 작은 콘크리트 충전 강관기둥의 강도는 이상의 식에 의한 이론값 보다 증가하는 경항을 보이게 되며, Galambos(4)등에 의한 실적조사에 의하면 AISC-LRFD의 설계식에 의한 강도보다 약 1.2 배 정도 증가하게 된다는 것 을 나타내고 있다.

3. 콘크리트의 구속효과

콘크리트 공시체에 삼축압축을 가하면 일축상태의 압축강 도보다 더 크게 상승하고 최대 강도이후 연성도 증가하는 것 으로 알려져 있다. 즉. 여기서 언급하는 삼축상태는 직접적인 상태(active confining state)로서 그림 1 에 나타낸 바와 같다. 이와 반대로 철근 콘크리트 기둥이나 콘크리트 충전 강 관기둥에서 나타나는 삼축상태는 콘크리트의 측면 팽창을 스 터럽이나 강관기둥이 구속함으로서 발생하는 간접적인 상태 (passive confining state)라고 할 수 있다. 따라서, 콘크 리크 충전 강관기둥에서 콘크리트의 재료특성은 기존에 연구 되었던 직접적인 삼축 압축상태의 응력-변형률 관계를 적용 하기보다는 콘크리트 충전 강관기둥의 기하학적 형상과 콘크 리트의 팽창을 구속하는 강재의 강도 둥을 고려한 응력-변형 률 관계를 적용하는 것이 더 타당하다고 할 수 있다.
그림 2는 단면형상에 따른 구속력을 나타낸 것이다. 단면 의 기하학적인 특성에 의해 원형단면은 반경방향으로 구속효 과가 일정한 반면, 정사각형 단면이나 직사각형 단면은 불균 등한 구속효과를 나타낸다. 본 논문에서는 이와 같은 콘크리

(a) 직접적인 구속상태 ($f_{2}=f_{3}$)

(b) 간접적인 구속효과

그림 1. 삼축상태의 종류에 따른 구속효과

그림 2. 단면형상에 따른 구속효과
트의 구속효과를 살펴보기 위해 콘크리트의 일축압축강도 f_{c}^{\prime}, 강재의 항복용력 f_{y}, 강관의 폭두께비 (b / t) 를 고려하 여 콘크리트면과 이를 둘러싸고 있는 강관면 사이에서 발생 하는 구속령을 산정하고자 하였다. 콘크리트 충전 강관기둥은 일반적으로 보에서 기둥으로의 하중전달은 강관을 거쳐 콘크 리트와 강관사이에 부착강도에 의하여 지지하는 것으로 알려 져 있다. 그러나 본 연구에서는 단순히 중심축 하중에 의한

콘크리트와 강관의 횡방향 변위 차에 의한 구속효과를 살펴 보고자 하여 부착강도의 메커니즘은 고려하지 않았다.

4. FEM 해석방법

4.1 Interface 요소

강관의 내부면과 충전 콘크리트의 외부 면에 대한 모델은 ABAQUS ${ }^{(5)}$ 에서 유용할 수 있는 gap 요소를 사융하였다. 충전 콘크리트의 외부 면에 존재하는 모든 절점과 이웃한 강 관의 절점을 gap 요소로 연결하였다. 그림 3 은 gap 요소의 모식도이다. gap 요소의 거동 알고리즘은 다음과 같다. 물체 가 변형한 후에 인접한 두 절점의 간격 h 는 식(3)과 같다.

$$
\begin{equation*}
h=d+\boldsymbol{n} \cdot\left(\boldsymbol{u}^{2}-\boldsymbol{u}^{1}\right) \geq 0 \tag{3}
\end{equation*}
$$

여기서 d 는 초기상태에서 두 절점간의 거리로 $d>0$ 이면 떨어져 있는 것이고 $d=0$ 이면 붙어 있는 상태를 나타낸다. 그리고 n 은 gap 요소의 방향, 즉 두 절점의 이동에 대한 양 의 방항을 정의해 준다. $\boldsymbol{u}^{1}, \boldsymbol{u}^{2}$ 는 각 절점의 변위를 나타낸 다. 본 연구에서는 초기거리 $d=0$ 으로 하여 강관과 콘크리트 면이 초기에는 부착된 것으로 하고 그림 3 의 1 번 절점을 콘 크리트의 외부면의 절점. 2 번 절점을 강관면의 절점으로 하 였다. 또한 절점 1 과 절점 2 의 거리는 강관 두께 t 의 $1 / 2$ 을 고 려하였다.

그림 3. gap 요소

4.2 요소설정과 경계조건

그림 4는 본 연구에서 사용한 요소이다. 콘크리트는 8절점 솔리드 요소(C3D8R), 강관은 4절점 쉘 요소(S4R)를 사용 하였다. 또한 그림 5 는 경계조전 및 하중재하를 나타낸 것이 다. $1 / 8$ 모델을 해석대상으로 하였으며 x, y, z 축에 대해 대칭 으로 경계조건을 부여하였다. 한편 하중재하 방법은 하중이

재하되는 강관과 콘크리트의 절점변위를 제어하는 방식을 택 하였다.

4-NODE SHELL
ELEMENT

그립 4. 솔리드요소(콘크리트)와 쉘요소(강관)

그림 5. 해석모델 및 경계조건

4.3 재료특성

강재와 콘크리트의 재료의 웅력-변형률 관계는 그림 6과 같다. 콘크리트의 응력 $\left(f_{c}\right)$-변형률 $\left(\varepsilon_{c}\right)$ 은 Kent와 Park ${ }^{(6)}$

둥이 제안한 식(4)와 (5)을 사용하였다. 이는 구속되지 않은 콘크리트의 응력-변형률 관계이다. 한편 강재의 응력-변형률 관계는 그립6과 같이 $\mathrm{Uy}^{(7)}$ 가 제안한 변형률경화구간이 포함 된 식을 사용하였다.

(a) 콘크리트의 응력-변형률 관계

(b) 강재의 융력-변형률 관계

그림 6. 해석모델의 재료적 성질

$$
\begin{align*}
& \mathrm{OA}: f_{c}=f_{c}^{\prime}\left[2\left(\varepsilon_{c} / \varepsilon_{c}^{\prime}\right)-\left(\varepsilon_{c} / \varepsilon_{c}^{\prime}\right)^{2}\right] \tag{4}\\
& \mathrm{AB}: f_{c}=f_{c}^{\prime}-D\left(\varepsilon_{c}-\varepsilon_{c}^{\prime}\right) \\
& \varepsilon_{50 u}^{\prime} \tag{5}
\end{align*}=\frac{3+0.002 f_{c}^{\prime}}{f_{c}^{\prime}-1000}
$$

여기서, f_{c}^{\prime} 와 ε_{c}^{\prime} 는 콘크리트의 최대압축강도와 변형률, $\varepsilon^{\prime} 50 u$ 는 최대압축강도의 0.5 일 때 변형률을 나타낸다. 그리 고 D 는 최대압축강도 이후 강도 저하구간의 기울기를 나타 낸다.

5. FEM 해석결과

5.1 Interface 요소의 거동특성

gap 요소의 거동은 다음과 같다. 첫 번째는 두 물체면의 면외방향 변형에서 콘크리트면의 변형보다 강관의 면외변형 이 더 큰 경우로 식(3)에서 $h>0$ 이 된다. 두 번째는 두 물체 면의 면외방향 변형에서 콘크리트면의 변형이 강관의 면외변 형이 보다 더 크거나 동일한 경우로 $h \leq 0$ 인 경우이다. 그림 7 은 gap 요소의 일부분으로 강관의 한 절점과 동일 위치의 콘크리트 절점간의 상대변위 δ 와 발생된 gap force에 관한 관계를 나타낸 것이다.

그림 7. gap요소의 거동

초기 하중재하 상태, 즉 일정 하중내에서는 콘크리트의 포 아송비가 강재의 포아송비보다 작아 interface 요소인 gap 요소에 힘이 발생하지 않는다. 그러나 전체길이 (l)에 대한 축 방향 변위 (δ), 즉 하중재하 방향의 변형률 (δ / l) 이 증가할 수록 콘크리트의 포아송비가 더 증가하여 결국 콘크리트와 강관의 면이 서로 근접하거나 붙어서 gap 요소의 힘이 발생 한다. 이때의 축방향변형률 (δ / l) 은 그림 7에서 볼 수 있는 바와 같이 0.001 정도가 되며 콘크리트의 포아송비는 δ / b 가 0.0011 보다 증가하는 경우에는 크게 증가하게 된다는 Chen ${ }^{(8)}$ 등의 연구결과와 일치하는 경향을 나타내게 된다. 또한 gap 요소에서 발생하는 힘은 축방향변형률 (δ / l) 이 0.002 정도에 도달한 이후 현저히 증가하게 되며 이는 그림 6(a)에 나타낸 바와 같이 콘크리트가 최대압축강도를 나타낼 때의 변형률과 거의 일치하는 것을 알 수 있다. 따라서, gap 요소의 거동은 하중진행 정도에 따라 콘크리트와 강관의 횡 방향 변위 차를 적절히 나타냄을 알 수 있다.

5.2 gap 요소의 위치별 특성

그림 8과 그림 9는 요소분할중 동일 단면상에 있는 gap 요소의 발생력으로 모서리에 있는 6 번 gap 요소의 발생력이 가장 크고 중앙으로 갈수록 발생력이 작아진다. 그리고 발생 시점도 서로 다른 현상을 보인다. 즉, 모서리에서 중앙부위 로 갈수록 발생시기가 지연되는 현상을 볼 수 있다. 이것은 앞서 설명한 기하학적 단면 형상에 기인되며 전단면에서 일 정하게 측압이 발생하는 원형 콘크리트 충전 강관기둥과 다 른 현상임을 알 수 있다. 특히 모서리의 6 번과 5 번, 4 번 gap 요소에서는 콘크리트 쳐대압축강도를 나타내는 변형률 $\varepsilon=0.002$ 근처에서 gap 요소의 힘이 발생하기 시작하여 0.005~0.006 정도에서 최대값을 나타내게 되며, 이 변형률 은 그림 10 에서처럼 $\mathrm{Tommii}{ }^{(9)}$ 등 기존에 수행된 정사각형 콘크리트 충전 강관단주의 하중-변형률관계에서 최대강도를 나타내는 변형률에 거의 일치함을 알 수 있다.

그림 8. 동일 단면상에 있는 gap요소

그림 9. 동일 단면상에 있는 gap요소의 발생력 비교

그림 10. Tommii의 실험결과 예

그림 11. 정사각형 단면의 구속력 분포형상

그림 11은 동일 단면상에서 gap 요소별 위치와 최대 발생 력의 크기를 나타낸 것이다. 이 그림에 나타낸 바와 같이 gap에서의 최대 발생력 F,는 그 요소 위치에 따라 변화하며, 따라서 콘크리트와 강관사이의 측압은 다음과 같이 평균 구 속응력 f_{r} 로 평가할 수 있다.

$$
\begin{equation*}
f_{r}=\frac{\sum_{i=1}^{N} F_{i}}{A} \tag{6}
\end{equation*}
$$

여기서, A 는 강관과 콘크리트 사이의 만나는 벽면의 면적 이다. 식(6)에 의한 폄균 구속응력 f_{r} 은 그림 12 에 나타낸 바와 같이 평균값을 나타내게 되며, 이는 철근 콘크리트 기둥 에서 k 라는 변수를 도입하여 떠철근에 의한 구속응력을 균등 한 분포현상으로 한 것과 유사한 개념 ${ }^{(10)}$ 이 된다.

그림 12. 철근 콘크리트 기둥에서의 평균 구속용력

5.3 요소분할의 민감성

요소개수에 따른 수렴성을 알아보기 위해 강관의 폭과 길이 에 대하여 $n \times n$ 개로 8 층까지 분할하였다. 그립 13 은 요소개수 에 따라 식(6)과 같이 계산한 gap force에 의한 평균 구속ㅇㅇㅇ력 $f_{r}(\mathrm{MPa})$ 의 수렴성을 나타낸다. 요소의 개수가 241 개 이상 사 용되었을 때 f_{r} 값이 일정함을 알 수 있다. 따라서 변수에 대한 영향을 검토할 때 조사한 수렴성을 이용하여 해석하였다.

그림 13. 요소분할에 따른 수렵성

5.4 하중재하 방식에 따른 구속효과

Galambos의 연구에서는 여러 실험들의 편차가 발생하는 요인으로서 하중재하 방식, 지지조건 등을 들고 있다. 또한 이러한 하중재하 방식의 다양성을 직접 실험으로 수행한 것 도 있다. 따라서 본 연구에서는 그림 13 과 같이 다양한 하중 재하 방식에 따라 충전 콘크리트의 구속효과를 점토하였다. 참고로 그림 $14(\mathrm{~b})$ 와 $14(\mathrm{~d})$ 에서 두 면의 오차는 1 mm 로 하 였고 이것은 δ / l 이 0.005 에 해당하는 수치이다.

5.4.1 강관에 하중이 재하되는 경우

강관에 하중이 재하되는 경우는 두 가지로 나누어 고려하 였다. 우선은 하중이 단지 강관에만 재하되는 경우(그림 14(a))로서 이러한 방식은 부분 충전된 강관기둥에 해당한다 고 볼 수 있다. case1의 기둥의 경우에는 그림 15 에 나타낸 바와 같이 축방향변형률 (δ / l) 이 크게 증가하여도 gap 요소 에서는 거의 작용력이 발생하지 않게 된다. 따라서 어느 정도 의 구속효과를 기대하기 위해서는 콘크리트에 하중이 전달될 수 있도록 격벽을 설치하는 것이 필요하다고 하겠다. 다음으 로서는 그림 $14(\mathrm{~b})$ 와 같이 재하면의 차이로 인하여 강관에 우선 재하된 후 나중에 콘크리트와 동시에 재하되는 경우 (case2)에 대하여 살펴보았다. 강관의 수직변형이 발생한 후 동시에 재하 되어도 즉시 gap 요소에 힘이 발생하지 않고 상 당한 수직변형이 일어나야 발생한다. 이는 두 재료의 포아송 비 차이의 효과를 발회하지 못해서 나타나는 현상이다. 따라 서 이상의 두가지 경우에 해당하는 콘크리트 충전 강관기둥 에서는 콘크리트에 의한 구속효과를 기대하기가 곤란하다고 할 수 있다. Bradford ${ }^{(11)}$ 의 연구에서도 casel의 경우 중공 강간기둥의 최대강도에 비해 강도상숭의 효과가 없는 것으로 나타나고 있다.

5.4 .2 콘크리트에 하중이 재하되는 경우

그림 $14(\mathrm{c})$ 에 나타낸 바와 같이 콘크리트에만 재하되는 경우 (case3)에는 다른 경우와 비교하여 gap 요소의 발생력 이 가장 크게 나타나는 것을 알 수 있다. 그러나 case3의 경 우에는 콘크리트에 의한 구속응력이 크게 증가하게 되나 하 중분담효과가 원활하지 못한 관계로 인하여 기둥의 강도는 곤크리트 강도에 좌우될 염려가 있다고 할 수 있다. 또한 그 림 $14(\mathrm{~d})$ 와 같이 콘크리트에 먼저 재하된 후에 강관과 동시 에 재하되는 기둥의 경우(case4)에서는 초기단계에 콘크리트 에 의한 구속력이 크게 증가한다. 그러나 축방향변형률 (δ / l) 이 약 0.005 에 도달하는 부근으로부터 강재의 포아송비 영 향으로 인하여 구속력은 급격히 감소하게 된다.
5.4.3 동시에 재하되는 경우

Sham ${ }^{(12)}$ 과 Johansson ${ }^{(13,14)}$ 에 의하면 콘크리트 충전 강 관기둥의 하중 전달 메커니즘은 동시에 하중이 재하되는 경 우 초기 강관의 하중분담이 축방향변형률이 증가할수록 콘크 리트의 하중분담으로 전달된다고 나타내었다. 따라서 그림 $14(\mathrm{e})$ 의 case5는 두 재료에 대해 하중을 적절히 분담시킬 수 있는 이상적인 경우로서 다음절에서 검토하는 해석모델들 의 하중 재하상태의 기본이 된다.

그림 15. 하중재하 방식에 따른 gap요소의 발생력 비교

6. 설계변수의 영향

6.1 강관의 폭-두께비에 따른 영향

강관의 푹두께비의 규정은 $\mathrm{AISC}-\mathrm{LRFD}$ 에서 제시하고 있는 식(7)과 같이 산정하였다.

$$
\begin{equation*}
\frac{b}{t} \leq \sqrt{\frac{3 E_{s}}{f_{y}}} \tag{7}
\end{equation*}
$$

콘크리트 충전 강관기둥의 푹두께비 제한은 일본, 미국. 유럽 등 다양하게 제안되고 있지만 아직 이론적으로 명확한 제한을 제시하지 못하고 있다. AISC-LRFD에서 제시하고 있는 식(7)은 평판의 4변 단순지지 조전으로 유도되었고 비 록 강관의 국부좌굴 발생이 완화된다고 보고되어 지고 있지 만 설계에는 반영되지 않고 있다. 따라서 본 연구에서는 강관 의 국부좌굴이 발생하지 않는 범위에서 해석을 수행하였고 해석 결과는 그림 16 과 같다. 이 그림으로부터 폭두꼐비 b / t 가 커질수록 평균 구속응력 $f_{r}(\mathrm{MPa})$ 이 감소함을 알 수 있다. 강관의 국부좌굴이 발생하지 않는 폭두께비이지만 강

관의 변형으로 인한 콘크리트와의 상대변위의 차이가 증가하 여 gap 요소의 발생력이 감소하는 경향을 보인다.

6.2 강재의 항복응력에 따른 영향

폭두께비 $b / t=12$ 로서 일정한 경우 평균 구속응력 f 과 강재 $(\mathrm{SS} 400, \mathrm{SM490}, \mathrm{SM} 490 \mathrm{Y})$ 의 항북응력 f_{r} 와의 관계 를 나타내면 그립 17 과 같다. f_{r} 가 증가함에 따라 구속효과 에 의한 구속응력의 크기도 점차로 증가함을 알 수 있다. 또 한 콘크리트의 f_{c}^{\prime} 가 커질수록 평균 구속응력 f_{r} 은 일정한 폭 으로 증가하게 되며, f_{c}^{\prime} 가 야 30.0 MPa 이상인 경우에는 그 증가폭이 다소 둔화되는 경항을 나타낸다.

6.3 콘크리트의 압축강도에 따른 영향

그림 18 은 평규 구속응력 f_{r} 과 콘크리트의 일축압축강도 f_{c}^{\prime} 와의 관계를 나타낸 것이다. 각 사용 강종에 대한 평균 구 속응력은 콘크리트의 f_{c}^{\prime} 가 약 30.0 MPa 정도까지는 거의 선형젹으로 증가하다가 이후 그 증가율이 야ㄱㅏㅏ 감소하게 된 다. 또한 그림 17 과 비교해 보면 평균 구속응력 f 은 강재의 항복응력 f_{y} 보다 콘크리트의 일축압축강도 f_{c}^{\prime} 에 의해 좀더 큰 영향을 받는다는 것을 알 수 있다.

6.4 평균 구속응력의 산정식

위에서 얻은 결과로는 개개의 변수들에 대한 영향만 나타 나므로 새로운 변수를 도입하는 것보다는 적절한 조합에 의 한 변수선정이 필요하다. 기존 연구자달 ${ }^{(15)}$ 의 조합형테 중 콘 크리트의 압축강도와 강재의 항복용령을 바탕으로 하는 응력 비 $\alpha\left(=f_{c}^{\prime} / f_{y}\right)$ 를 도입하여 그림 19 와 같이 나타내었다. 여 기서 해석모델의 수는 강재의 항복응력 f_{y} 에 대해 3 종류, 콘 크리트 압축강도 f_{c}^{\prime} 에 대해 7종류, 강관의 푹두깨비 $b /$ t에 대해 6 종류를 모두 조합하여 총 126 개 해석모델에 대해 수 행하였고 해석모텔의 수치는 표 1에 나타내었다. 세 곡선의 회거식 형태는 $A \ln (\alpha)+\beta$ 의 자연로그 형때로 표현할 수 있으며 평균 구속융력 f_{r} 의 산졍식은 다음과 같이 쓸 수 있 다.

$$
\begin{equation*}
f_{r}=-1.3907 \ln (\alpha)+\beta \tag{8}
\end{equation*}
$$

여기서 변수 α 와 β 항은 가각 식(9)과 식(10)과 같이 된 다.

$$
\begin{align*}
& \alpha=0.00116\left(\frac{b}{t}\right) \frac{f_{y}^{0.5}}{f_{c}^{\prime}} \tag{9}\\
& \beta=0.0053 f_{y}-4.7063 \tag{10}
\end{align*}
$$

식(8)에서 -1.3907 은 세 회거식에서 A계수의 평균값이고 β 항의 식은 강재의 항복응력을 변수로 하였고 결정계수는 0.99 로 만족할만한 식으로 판단된다.

표 1. 해석모델 제원

$b(\mathrm{~mm})$	$l(\mathrm{~mm})$	$\mathrm{t}(\mathrm{mm})$	b/t	$f_{c}^{\prime}(\mathrm{MPa})$	$f_{y}(\mathrm{MPa})$
120	400	15.0	8	14.70	235.20
		10.0	12	17.64	
			16	20.58	313.92
		7.5	16	23.52	
		6.0	20	27.44	
		5.0	24	29.40	353.16
		4.3	28	39.20	

그림 16. 폭-두께비에 따른 영향

그림 17. 강재의 항복옹력에 따른 영향

그림 18. 콘크리트의 압축강도에 따른 영향

그림 19. 조합된 변수와 평균구속응력의 관계

6.5 정사각형 콘크리트 충전 강관단주의 강도식

이상의 2 장에서는 단순누가개념을 이용한 강도평가식은 세 장비가 작은 단주의 영역에서 실험값에 비하여 과소평가되는 경향이 있다는 것을 언급하였다. 여기서는 단주영역의 정사각 형 콘크리트 충전 강관기둥에 대하여 식(8)에 의한 콘크리트 구속 효과를 고려하여 식(11)로 평가할 수 있는 것으로 하였다.

$$
\begin{equation*}
P_{y}=A_{s} f_{y}+A_{c} f_{c c} \tag{11}
\end{equation*}
$$

여기서 $f_{c c}=f_{c}^{\prime}+f_{r}$ 로서 이 식은 철근 콘크리트 기둥에서 구속효과를 고려한 압축영력식과 유사한 형태이다. 표 2 와 그림 20 은 식(11)에 의한 강도 P_{y} 와 기존의 실험결과 ${ }^{(1216.17,18)}$ 로부터 구한 강도 P_{f} 를 비교한 것이다. 그림 20 으로부터 동일한 실험값 P_{i} 에 대하여 식(1)에 의한 단순누가강도는 약 7% 정도, 식(2)

표 2. 실험제원 및 제안식 비교

b (mm)	t (mm)	f_{c}^{\prime} (MPa)	f_{y} (MPa)	A_{s} $\left(\mathrm{~mm}^{2}\right)$	A_{c} $\left(\mathrm{~mm}^{2}\right)$	b / t	P_{t} / P_{y}
122.45	4.55	23.81	322	2229	13900	26.91	1.03
121.30	5.70	23.81	312	2766	13363	21.28	0.99
200.00	5.86	11.76	321	4688	37690	34.13	0.99
148.10	4.30	13.80	297	2547	20678	34.44	1.06
120.00	5.86	35.23	321	2813	13028	20.48	0.98
120.00	5.86	20.27	321	2813	13028	20.48	0.98
120.00	3.84	18.29	330	1843	13493	31.25	1.01
120.00	3.84	20.92	330	1843	13493	31.25	0.96
120.00	3.84	33.01	330	1843	13493	31.25	1.03
140.00	3.84	11.21	330	2150	18540	36.46	0.98
126.90	4.55	23.81	322	2310	14970	27.89	0.99
126.80	7.47	23.11	347	3789	14240	16.97	1.05
140.00	3.84	10.65	330	2150	18540	36.46	1.02
140.00	3.84	36.60	330	2150	18540	36.46	1.05
120.00	5.86	17.25	321	2813	13028	20.48	1.03
120.00	5.86	35.23	321	2813	13028	20.48	1.04
140.00	5.86	10.87	321	3282	17994	23.89	1.06
140.00	5.86	12.22	321	3282	17994	23.89	0.99
140.00	5.86	36.60	321	3222	17994	23.89	1.14
140.00	5.86	11.76	321	3282	17994	23.89	1.08
200.00	5.86	11.76	321	4688	37690	344.13	1.04
114.30	9.63	32.15	254	4401	10956	11.87	1.02
119.50	7.50	23.81	347	3585	12544	15.93	1.31

(b) AISC-LRFD 설계식과 제안식의 비교

의 AISC-LRFD 설계식에 의한 이론값은 약 12% 정도 안전측 으로 평가되는 것을 알 수 있다. 또한 식(11)의 제안식에 의한 강도는 실험결과로부터 구한 P_{t} 와 거의 일치하게 된다.

7. 결 론

본 논문에서는 콘크리트 충전 단주기둥을 대상으로 FEM 해석에 의한 콘크리트의 구속효과에 대하여 검토하였다. 이를 통하여 얻은 주요 결론을 요약하면 다음과 같다.
(1) 콘크리트의 구속효과를 고려한 콘크리트 충전 강관기 둥의 강도평가식을 제안하였으며 실험결과와의 비교를 통하여 그 타당성을 확인하였다.
(2) 단순누가강도에 의한 콘크리트 충전 강관기둥의 강도 는 실험값과 비교하여 약 7% 정도, AISC-LRFD 설 계식에 의한 강도와 비교하여 약 12% 정도 안전측으 로 평가됨을 확인하였고 제안된 식과 비교하였을 경우 는 약 2% 로 거의 일치하는 결과를 확인하였다.
(3) 콘크리트의 구속효과에 의한 평균구속응력 f_{r} 은 강관 단면의 폭두께비 (b / t) 가 증가함에 따라 현저히 감소 하는 경향을 나타내었다. 또한 평균구속응력 f_{r} 은 콘 크리트의 압축강도 f_{c}^{\prime} 가 약 30 MPa 이하에서는 선형 적으로 증가하다가 이후 그 증가율은 감소하였다.
(4) 콘크리트에 의한 구속력은 평면위치에 따라 변화하며, 모서리 부근에서 가장 큰 구속력이 발생하고 중앙으로 갈수록 급속히 감소하였다.
(5) 콘크리트 충전 강관기둥의 구속효과는 재하방법에 따 라 차이가 발생하게 되며, 강관에만 재하되는 콘크리 트 충전 강관기둥은 콘크리트에 의한 구속효과를 거의 기대할 수 없는 것으로 판단된다.
(6) 강재와 콘크리트의 포아송비 차이에 따른 상대적인 거 동특성은 interface 요소인 gap요소를 이용하여 적절 히 파악할 수 있다는 것을 확인하였다.

참 고 문 헌

1. Knowels,R., Park, R., Axial Load Design for Concrete-Filled Steel Tubes, Journal of Structural Division, ASCE, 96. ST10, pp.2125~2153
2. Sugano, S., Nagashima, T.. Seismic Behavior of Concrete Filled Tubular Steel Columns. Tenth Structural Congress 92, ASCE, pp.914~917
3. Ben Kato, Column Curves of Steel-Concrete

Composite Members, J. Construct. Steel Res., Vol. 39, No. 2, pp.121~135, 1996
4. Jane E. Lundberg. Theodore V. Galambos, Load and resistance factor design of composit columns, Structural Safety Vol. 18. No. 2/3, pp.169~177, 1996
5. ABAQUS User's Manual.(1999). Hibbit Karlsson, and Sorensen,Inc.,Pawt-ucket, R.I.
6. Kent,D.C., Park.R., Flexural members with confined concrete. Journal of Structural Division. ASCE. Vol. 97, No. ST7, pp.1969~1989, 1971
7. B. Uy, Local and post-local buckling of concrete filled steel welded box columns, Journal of Constructional steel research, pp. $47 \sim 72,1998$
8. W.F.Chen, "Plasticity in Reinforced Concrete", 1982
9. Tommii,M., Experimental Studies one Concrete Filled Steel Tubular Columns Under Concentric Loading, International Colloquium on Stability of Structures Under Static and Dynamic Loads, Washington, D.C ., May17-19, pp.718~741, 1977
10. C. Yalcin, M. Saatcioglu, "Inelastic analysis of reinforced concrete columns", Computers and Structures, 2000
11. Mark A. Bradford, Composite Steel and Concrete Structural Members, 1995
12. M.Shams and M.A.Saadeghvaziri, "Nonlinear Response of concrete-Filled Steel tubular columns under Axial loading", Structural Journal, ACI. Vol. 96, No. 6, pp. $1009 \sim 1017,1999$
13. Mathias Johansson and Kent Gylltoft, "Structural behavior of slender circular steel-concrete composite columns under various means of load application", Steel and Composite Structures, Vol. 1. No. 4, 2001
14. Mathias Johansson, "The efficiency of passive confinement in CFT columns", Steel and Composite Structures. Vol. 2. No. 5, 2002
15. Martin D. O'Shea, Russell Q. Bridge, "Design of Circular Thin-Walled Concrete Filled Steel Tubes", Journal of Structural Engineering. Vol. 126. NO. 11. November, 2000
16. K.A.S. Susantha, Hanbin Ge, Tsutomu Usami, "Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes", Engineering Structures, 2001
17. Lin-Hai Han, Xioa-Ling Zhao, "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns". Steel and Composite Structures, Vol. 1, No. 1, 2001
18. Stephen P. Schneider, "Axially Loaded ConcreteFilled Steel Tubes", Journal of Structural Engineering, Vol. 124, NO. 10, October, 1998
(접수일자 : 2002년 9월 3일)

[^0]: 1) 정회원, 인하대학교 토목공학과 부교수, 공학박사
 2) 학생회원, 인하대학교 토목공학과, 석사과정
