DOI QR코드

DOI QR Code

Natural Products as Manipulators of Rumen Fermentation

  • Wallace, R. John (Rowett Research Institute) ;
  • McEwan, Neil R. (Rowett Research Institute) ;
  • McIntosh, Freda M. (Rowett Research Institute) ;
  • Teferedegne, Belete (Rowett Research Institute) ;
  • Newbold, C. James (Rowett Research Institute)
  • Published : 2002.10.01

Abstract

There is increasing interest in exploiting natural products as feed additives to solve problems in animal nutrition and livestock production. Essential oils and saponins are two types of plant secondary compounds that hold promise as natural feed additives for ruminants. This paper describes recent advances in research into these additives. The research has generally concentrated on protein metabolism. Dietary essential oils caused rates of NH$_3$ production from amino acids in ruminal fluid taken from sheep and cattle receiving the oils to decrease, yet proteinase and peptidase activities were unchanged. Hyper-ammonia-producing (HAP) bacteria were the most sensitive of ruminal bacteria to essential oils in pure culture. Essential oils also slowed colonisation and digestion of some feedstuffs. Ruminobacter amylophilus may be a key organism in mediating these effects. Saponin-containing plants and their extracts appear to be useful as a means of suppressing the bacteriolytic activity of rumen ciliate protozoa and thereby enhancing total microbial protein flow from the rumen. The effects of some saponins seems to be transient, which may stem from the hydrolysis of saponins to their corresponding sapogenin aglycones, which are much less toxic to protozoa. Saponins also have selective antibacterial effects which may prove useful in, for example, controlling starch digestion. These studies illustrate that plant secondary compounds, of which essential oils and saponins comprise a small proportion, have great potential as 'natural' manipulators of rumen fermentation, to the potential benefit of the farmer and the environment.

Keywords

References

  1. Attwood, G. T., A. V. Klieve, D. Ouwerkerk and B. K. C. Patel. 1998. Ammonia-hyperproducing bacteria from New Zealand ruminants. Appl. Environ. Microbiol. 64:1796-1804.
  2. Bird, S. H. and R. A. Leng. 1978. The effect of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. Br. J. Nutr. 40:163-167. https://doi.org/10.1079/BJN19780108
  3. Bird, S. H., M. K. Hill and R. A. Leng. 1979. The effect of defaunation of the rumen on the growth of lambs on low - protein high-energy diets. Br. J. Nutr. 42:81-87. https://doi.org/10.1079/BJN19790091
  4. Broudiscou, L., P. Sylvie and C. Poncet. 1994. Effect of linseed oil supplementation on feed degradation and microbial synthesis in the rumen of ciliate free and refaunated sheep. Anim. Feed Sci. Technol. 49:189-202. https://doi.org/10.1016/0377-8401(94)90045-0
  5. Chang, S. T., P. F. Chen and S. C. Chang. 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmacol. 77:123-127. https://doi.org/10.1016/S0378-8741(01)00273-2
  6. Cheeke, P. R. 1996. Biological effects of feed and forage saponins and their impacts on animal production. In: Saponins Used in Food and Agriculture (Ed. G. R. Waller and K. Yamasaki). New York: Plenum Press. pp. 377-385.
  7. Cimanga, K., K. Kambu, L. Tona, S. Apers, T. De Bruyne, N. Hermans, J. Totte, L. Pieters and A. J. Vlietinck. 2002. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 79:213-220. https://doi.org/10.1016/S0378-8741(01)00384-1
  8. Demeyer, D. and C. Van Nevel. 1986. Influence of substrate and microbial interaction on efficiency of rumen microbial growth. Reprod. Nutr. Develop. 26:161-179. https://doi.org/10.1051/rnd:19860203
  9. Diaz, A., O. M. Avendan and A. Escobar. 1994. Evaluation of Sapindus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livestock Res. Rural Develop. 5:1-10.
  10. Eadie, J. M. and W. J. Shand. 1981. The effect of synperonic NP9 upon ciliate free and faunated sheep. Proc. Nutr. Soc. 40, 113A.
  11. Elgayyar, M., F. A. Draughon, D. A. Golden and J. R. Mount. 2001. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 64:1019-1024. https://doi.org/10.4315/0362-028X-64.7.1019
  12. Floret, F., L. C. Chaudhary, W. C. Ellis, S. El Hassan, N. McKain, C. J. Newbold and R. J. Wallace. 1999. Influence of 1-[(E)-2-(2-methyl-4-nitrophenyl)diaz-1-enyl]pyrrolidine-2-carboxylic acid and diphenyliodonium chloride on ruminal protein metabolism and ruminal microorganisms. Appl. Environ. Microbiol. 65:3258-3260.
  13. Goetsch, A. L. and F. N. Owens. 1985. Effects of sarsaponin on digestion and passage rates in cattle fed medium to low concentrates. J. Dairy Sci. 68:2377-2384. https://doi.org/10.3168/jds.S0022-0302(85)81112-7
  14. Goll, P. H., A. Lemma, J. Duncan and B. Mazengia. 1983. Control of schistosomiasis in Adewa, Ethiopia, using the plant molluscicide endod (Phytolacca dodecandra). Tropenmedzin and Parasitologie 34:177-183.
  15. Hostettmann, K. and A. Marston. 1995. Saponins. Cambridge: Cambridge University Press.
  16. Hristov, A. N., A. T. McAllister, F. H. Van Herk, C. J. Newbold and K. J. Cheng. 1999. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 77: 2554-2563. https://doi.org/10.2527/1999.7792554x
  17. Imai, H., K. Osawa, H. Yasuda, H. Hamashima, T. Arai and M. Sasatsu. 2001. Inhibition by the essential oils of peppermint and spearmint of the growth of pathogenic bacteria. Microbios 106(Suppl. 1):31-39.
  18. Kayouli, C., D. I. Demeyer, C. J. Van Nevel and R. Dendooven. 1984. Effect of defaunation on straw digestion in sacco and on particle retention in the rumen. Anim. Feed Sci. Technol. 10: 165-172. https://doi.org/10.1016/0377-8401(84)90006-3
  19. Lemma, A. 1970. Laboratory and field evaluation of the molluscicidal properties of Phytolacca dodecandra. Bulletin of World Health Organization 42:597-612.
  20. Lovelock, L. K. A., J. G. Buchanan-Smith and C. W. Forsberg. 1982. Difficulties in defaunation of the ovine rumen. Can. J. Anim. Sci. 62:299-303. https://doi.org/10.4141/cjas82-032
  21. Lu, C. D. and N. A. Jorgensen. 1987. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 117:919-927.
  22. Lu, C. D., L. S. Tsai, D. M. Schaefer and N. A. Jorgensen. 1987. Alteration of fermentation in continuous culture of mixed rumen bacteria. J. Dairy Sci. 70:799-805. https://doi.org/10.3168/jds.S0022-0302(87)80076-0
  23. Machmuller, A., D. A. Osowski, M. Wanner and M. Kreuzer. 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71:117-130. https://doi.org/10.1016/S0377-8401(97)00126-0
  24. Makkar, H. P. and K. Becker. 1997. Degradation of Quillaja saponins by mixed culture of rumen microbes. Lett. Appl. Microbiol. 25:243-245. https://doi.org/10.1046/j.1472-765X.1997.00207.x
  25. Makkar, H. P. S., S. Sen, M. Blummel and K. Becker. 1998. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria, and Acacia auriculoformis on rumen fermentation. J. Agric. Food Chem. 46:4324-4328. https://doi.org/10.1021/jf980269q
  26. Marino, M., C. Bersani and G. Comi. 2001. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 67:187-195. https://doi.org/10.1016/S0168-1605(01)00447-0
  27. Matsumoto, M., T. Kobayashi, A. Takenaka and H. Itabashi, 1991. Defaunation effects of medium-chain fatty acids and their derivatives on goat rumen protozoa. J. Gen. Microbiol. 37: 439-445. https://doi.org/10.2323/jgam.37.439
  28. McSweeney, C. S., B. Palmer, R. Bunch and D. O. Krause. 1999. Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl. Environ. Microbiol. 65:3075-3083.
  29. Mehrez, A. Z. and E. R. Orskov. 1977. A study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen. J. Agric. Sci. Camb. 88:645-650. https://doi.org/10.1017/S0021859600037321
  30. Nagy, J. G. and R. P. Tengerdy. 1968. Antibacterial action of essential oils of Artemisia as an ecological factor II. Antibacterial action of the volatile oils of Artemisia tridentata (big sagebrush) on bacteria from the rumen of mule deer. Appl. Microbiol. 16:441-444.
  31. Navas-Camacho, A., M. A. Laredo, A. Cuesta, H. Anzola and J. C. Leon. 1993. Effect of supplementation with a tree legume forage on rumen function. Livestock Res. Rural Develop. 5:58-71.
  32. Newbold, C. J. and D. G. Chamberlain. 1988. Lipids as rumen defaunating agents. Proc. Nutr. Soc. 47:154A.
  33. Newbold, C. J., S. M. El Hassan, J. Wang, M. E. Ortega and R. J. Wallace. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 78:237-249. https://doi.org/10.1079/BJN19970143
  34. Newbold, C. J., C. S. Stewart and R. J. Wallace. 2001. Developments in rumen fermentation -the scientist's view. In: Recent Advances in Animal Nutrition 2001 (Ed. P. C. Garnsworthy and J. Wiseman). Nottingham University Press, Nottingham, pp. 251-279.
  35. Odenyo, A., P. O. Osuji and O. Karanfil. 1997. Effect of multipurpose tree (MPT) supplements on ruminal ciliate protozoa. Anim. Feed Sci. Technol. 67:169-180. https://doi.org/10.1016/S0377-8401(96)01118-2
  36. Oh, H. K., M. B. Jones and W. M. Longhurst. 1968. Comparison of rumen microbial inhibition resulting from various essential oils isolated from relatively unpalatable plant species. Appl. Microbiol. 16:39-44.
  37. Oh, H. K., T. Sakai, M. B. Jones and W. M. Longhurst. 1967. Effect of various essential oils isolated from Douglasfir needles upon sheep and deer rumen microbial activity. Appl. Microbiol. 15:777-784.
  38. Orpin, C. G. 1977. Studies on the defaunation of the ovine rumen using dioctyl sodium sulfosuccinate. J. Appl. Bacteriol. 43:309-318. https://doi.org/10.1111/j.1365-2672.1977.tb00756.x
  39. Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). London: Blackie Academic and Professional. pp. 140-195.
  40. Russell, J. B., R. Onodera and T. Hino. 1991. Ruminal protein fermentation: new perspectives on previous contradictions. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). Academic Press, San Diego, pp. 681-697.
  41. Shapiro, S., A. Meier and B. Guggenheim. 1994. The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol. 9:202-208. https://doi.org/10.1111/j.1399-302X.1994.tb00059.x
  42. Silva, A. T., R. J. Wallace and E. R. Orskov. 1987. Use of particlebound microbial enzyme activity to predict the rate and extent of fibre degradation in the rumen. Br. J. Nutr. 57:407-415. https://doi.org/10.1079/BJN19870048
  43. Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Chapman & Hall, London, pp. 10-72.
  44. Teferedegne, B. 2000. The use of foliage from multipurpose trees to manipulate rumen fermentation. Ph.D. thesis, University of Aberdeen, UK.
  45. Teferedegne, B., P. O. Osuji, A. A. Odenyo, R. J. Wallace and C. J. Newbold. 1999. Influence of foliage of different accessions of the sub-tropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopian and Scottish sheep. Anim. Feed Sci. Technol. 78:11-20. https://doi.org/10.1016/S0377-8401(98)00272-7
  46. Ushida, K., J. P. Jouany and D. I. Demeyer. 1991. Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). San Diego, California: Academic Press, Inc. pp. 625-654.
  47. Valdez, F. R., L. J. Bush, A. L. Goetsch and F. N. Owens. 1986. Effect of steroidal sapogenins on ruminal fermentation and on production of lactating dairy cows. J. Dairy Sci. 69:1568-1575. https://doi.org/10.3168/jds.S0022-0302(86)80573-2
  48. Van Nevel, C. J. and D. I. Demeyer. 1990. Effects of antibiotics, a deaminase inhibitor and sarsaponin on nitrogen metabolism of rumen contents in vitro. Anim. Feed Sci. Technol. 31:323-348. https://doi.org/10.1016/0377-8401(90)90137-W
  49. Wallace, R. J. 1983. Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. Br. J. Nutr. 50:345-355. https://doi.org/10.1079/BJN19830102
  50. Wallace, R. J. and C. A. McPherson. 1987. Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br. J. Nutr. 58:313-323. https://doi.org/10.1079/BJN19870098
  51. Wallace, R. J., L. Arthaud and C. J. Newbold. 1994. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Applied Environmental Microbiology 60:1762-1767.
  52. Wallace, R. J., C. Atasoglu and C. J. Newbold. 1999. Role of peptides in rumen microbial metabolism. Asian-Aus. J. Anim. Sci. 12:139-147. https://doi.org/10.5713/ajas.1999.139
  53. Wang, Y., T. A. McAllister, L. J. Yanke and P. R. Cheeke. 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887-896. https://doi.org/10.1046/j.1365-2672.2000.01054.x
  54. Wang,Y., T. A. McAllister, C. J. Newbold, L. M. Rode, P. R. Cheeke and K. -J. Cheng. 1998. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Anim. Feed Sci. Technol. 74:143-153. https://doi.org/10.1016/S0377-8401(98)00137-0
  55. Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa: Springer Verlag.
  56. Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa. In The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). London: Blackie Academic and Professional. pp. 73-120.

Cited by

  1. Antimicrobial properties of plant secondary metabolites vol.63, pp.04, 2004, https://doi.org/10.1079/PNS2004393
  2. Effect of Yucca schidigera with or without nisin on ruminal fermentation and microbial protein synthesis in sheep fed silage- and hay-based diets vol.75, pp.6, 2004, https://doi.org/10.1111/j.1740-0929.2004.00223.x
  3. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins vol.100, pp.1, 2006, https://doi.org/10.1111/j.1365-2672.2005.02746.x
  4. Effect of a blend of essential oil compounds on the colonization of starch-rich substrates by bacteria in the rumen vol.0, pp.0, 2007, https://doi.org/10.1111/j.1365-2672.2005.03455.x
  5. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems vol.1, pp.09, 2007, https://doi.org/10.1017/S1751731107000298
  6. Effect of a blend of essential oil compounds on the colonization of starch-rich substrates by bacteria in the rumen vol.103, pp.6, 2007, https://doi.org/10.1111/j.1365-2672.2007.03455.x
  7. Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation vol.90, pp.6, 2007, https://doi.org/10.3168/jds.2006-644
  8. Effects of Quillaja saponaria extract alone or in combination with Yucca schidigera extract on ruminal fermentation and methanogenesis in vitro vol.79, pp.2, 2008, https://doi.org/10.1111/j.1740-0929.2008.00517.x
  9. Effect of feed type and essential oil product on equine chewing activity vol.92, pp.6, 2008, https://doi.org/10.1111/j.1439-0396.2007.00758.x
  10. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production vol.22, pp.02, 2009, https://doi.org/10.1017/S0954422409990163
  11. Influence of Essential Oils Supplementation on Digestion, Rumen Fermentation, Rumen Microbial Populations and Productive Performance of Dairy Cows vol.3, pp.1, 2009, https://doi.org/10.3923/ajas.2009.1.12
  12. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations vol.96, pp.4, 2009, https://doi.org/10.1007/s10482-009-9364-1
  13. Effect of incremental levels of fish oil supplementation on specific bacterial populations in bovine ruminal fluid vol.96, pp.1, 2011, https://doi.org/10.1111/j.1439-0396.2010.01113.x
  14. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils vol.158, pp.Pt_11, 2012, https://doi.org/10.1099/mic.0.061127-0
  15. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance—a review vol.44, pp.4, 2012, https://doi.org/10.1007/s11250-011-9960-8
  16. Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation vol.92, pp.3, 2012, https://doi.org/10.4141/cjas2012-059
  17. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids vol.109, pp.07, 2013, https://doi.org/10.1017/S0007114512003030
  18. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers vol.98, pp.1, 2013, https://doi.org/10.1111/jpn.12029
  19. The effect of rosemary (Rosmarinus officinalis L.) essential oil on digestibility, ruminal fermentation and blood metabolites of Ghezel sheep fed barley-based diets vol.12, pp.2, 2014, https://doi.org/10.5424/sjar/2014122-4805
  20. Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources vol.27, pp.10, 2014, https://doi.org/10.5713/ajas.2014.14086
  21. The effect of essential oils of Zataria multiflora and Mentha spicata on the in vitro rumen fermentation, and growth and deaminative activity of amino acid-fermenting bacteria isolated from Mehraban sheep vol.54, pp.3, 2014, https://doi.org/10.1071/AN12244
  22. NDF digestibility vol.86, pp.1, 2014, https://doi.org/10.1111/asj.12249
  23. on rumen environment, milk yield and milk composition in lactating dairy cows vol.99, pp.2, 2014, https://doi.org/10.1111/jpn.12198
  24. An overview of the role of rumen methanogens in methane emission and its reduction strategies vol.14, pp.16, 2015, https://doi.org/10.5897/AJB2014.14129
  25. Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage vol.153, pp.04, 2015, https://doi.org/10.1017/S0021859614000975
  26. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures vol.161, pp.2, 2015, https://doi.org/10.1099/mic.0.000009
  27. Effects of Rosmarinus officinalis L. as essential oils or in form of leaves supplementation on goat’s production and metabolic statute vol.47, pp.2, 2015, https://doi.org/10.1007/s11250-014-0721-3
  28. L. essential oils supplementation on digestion, colostrum production of dairy ewes and lamb mortality and growth vol.86, pp.7, 2015, https://doi.org/10.1111/asj.12352
  29. RETZ. containing tannins and saponins vol.87, pp.6, 2015, https://doi.org/10.1111/asj.12494
  30. Using juniper berry ( Juniperus communis ) as a supplement in Japanese quail diets vol.45, pp.5, 2016, https://doi.org/10.1590/S1806-92902016000500004
  31. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows vol.48, pp.3, 2016, https://doi.org/10.1007/s11250-016-1004-y
  32. Effects of plants containing secondary metabolites as feed additives on rumen metabolites and methanogen diversity of buffaloes vol.56, pp.3, 2016, https://doi.org/10.1071/AN15596
  33. Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-015-0057-5
  34. Impact of Lemongrass and Galangal as Feed Additives on Performance of Lactating Barki Goats vol.12, pp.3, 2017, https://doi.org/10.3923/ijds.2017.184.189
  35. conditions vol.16, pp.3, 2017, https://doi.org/10.1080/1828051X.2017.1291283
  36. Effects of Yucca schidigera on gas mitigation in livestock production: A review vol.60, pp.0, 2017, https://doi.org/10.1590/1678-4324-2017160359
  37. rumen fermentation and methane production as affected by rambutan peel powder pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1371608
  38. Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile pp.1751-732X, 2018, https://doi.org/10.1017/S1751731117002336
  39. rumen fermentation, methane production and true digestibility at different forage to concentrate ratios vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2016.1270823
  40. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation1 vol.86, pp.12, 2008, https://doi.org/10.2527/jas.2008-0885
  41. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep1 vol.88, pp.2, 2010, https://doi.org/10.2527/jas.2009-2377
  42. SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options1 vol.91, pp.11, 2013, https://doi.org/10.2527/jas.2013-6583
  43. The effect of Yucca schidigera powder added to lamb feed on fatteningperformance, some blood parameters, the immune system, and theantioxidative metabolism of the hepatic tissue vol.40, pp.13036181, 2016, https://doi.org/10.3906/vet-1504-92
  44. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle pp.1751-732X, 2018, https://doi.org/10.1017/S1751731118002276
  45. Candidate metabolites for methane mitigation in the forage legume biserrula vol.38, pp.3, 2018, https://doi.org/10.1007/s13593-018-0510-x
  46. Oliver leaf on growth performance, digestibility, rumen fermentation and antioxidant status of fattening lambs vol.89, pp.6, 2018, https://doi.org/10.1111/asj.12998
  47. Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats vol.85, pp.02, 2018, https://doi.org/10.1017/S0022029918000043
  48. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review vol.58, pp.6, 2018, https://doi.org/10.1071/AN15757
  49. Herbal additives influence in vitro fermentative attributes and methanogenesis differently in cattle and buffalo vol.58, pp.6, 2018, https://doi.org/10.1071/AN15624
  50. Effects of different levels of lespedeza and supplementation with monensin, coconut oil, or soybean oil on ruminal methane emission by mature Boer goat wethers after different lengths of feeding vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1473253
  51. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0249-x
  52. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives vol.101, pp.5, 2018, https://doi.org/10.3168/jds.2017-13841
  53. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants vol.88, pp.13, 2008, https://doi.org/10.1002/jsfa.3333
  54. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions vol.97, pp.11, 2014, https://doi.org/10.3168/jds.2014-8064
  55. Rambutan fruit peel powder and dietary protein level influencing on fermentation characteristics, nutrient digestibility, ruminal microorganisms and gas production using in vitro fermentation techniques pp.1573-7438, 2019, https://doi.org/10.1007/s11250-019-01837-x
  56. In vitro Evaluation of Oil Palm Fronds Fermented with Produren: A Durian Probiotic vol.18, pp.2, 2019, https://doi.org/10.3923/pjn.2019.186.192
  57. Effects of Lemongrass Leaves as Essential Oil Sources on Rumen Microbial Ecology and Nutrient Digestibility in an in vitro System vol.18, pp.3, 2019, https://doi.org/10.3923/pjn.2019.254.259
  58. Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe vol.9, pp.1, 2019, https://doi.org/10.3390/ani9010029
  59. Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa vol.82, pp.2, 2002, https://doi.org/10.1016/s0301-6226(03)00012-5
  60. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production&sbd;A Review vol.53, pp.21, 2002, https://doi.org/10.1021/jf048053d
  61. Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep vol.19, pp.11, 2002, https://doi.org/10.5713/ajas.2006.1580
  62. Supplementation of Essential Oil Extracted from Citrus Peel to Animal Feeds Decreases Microbial Activity and Aflatoxin Contamination without Disrupting In vitro Ruminal Fermentation vol.19, pp.11, 2002, https://doi.org/10.5713/ajas.2006.1617
  63. Chemical and Biological Activity of Triterpene Saponins from Medicago Species vol.1, pp.12, 2006, https://doi.org/10.1177/1934578x0600101217
  64. Plant bioactives for ruminant health and productivity vol.69, pp.2, 2002, https://doi.org/10.1016/j.phytochem.2007.08.017
  65. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen vol.71, pp.11, 2002, https://doi.org/10.1016/j.phytochem.2010.05.010
  66. Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats vol.24, pp.6, 2002, https://doi.org/10.5713/ajas.2011.10199
  67. The effects of dietary consumption of plants secondary compounds on small ruminants' products quality vol.101, pp.1, 2011, https://doi.org/10.1016/j.smallrumres.2011.09.035
  68. Review of substances/agents that have direct beneficial effect on the environment: mode of action and assessment of efficacy vol.10, pp.6, 2002, https://doi.org/10.2903/sp.efsa.2013.en-440
  69. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec vol.29, pp.None, 2014, https://doi.org/10.1016/j.anaerobe.2013.10.008
  70. The effects of carvacrol and/or thymol on the performance, blood and rumen parameters, and carcass traits of Merino sheep vol.40, pp.5, 2002, https://doi.org/10.3906/vet-1601-53
  71. Methane production, fermentation characteristics, and microbial profiles in the rumen of tropical cattle fed tea seed saponin supplementation vol.216, pp.None, 2002, https://doi.org/10.1016/j.anifeedsci.2016.03.005
  72. Effect of Asteraceae Plant Extracts on In vitro Ruminal Fermentation Characteristics vol.52, pp.5, 2002, https://doi.org/10.14397/jals.2018.52.5.39
  73. Effect of banana flower powder on rumen fermentation, synthesis of microbial protein and nutrient digestibility in swamp buffaloes vol.59, pp.9, 2019, https://doi.org/10.1071/an18063
  74. Evaluating Strategies to Reduce Ruminal Protozoa and Their Impacts on Nutrient Utilization and Animal Performance in Ruminants - A Meta-Analysis vol.10, pp.None, 2002, https://doi.org/10.3389/fmicb.2019.02648
  75. Organic additives used in beef cattle feedlot: Effects on metabolic parameters and animal performance vol.90, pp.5, 2019, https://doi.org/10.1111/asj.13183
  76. Effect of Dietary Supplementation of Moringa Oleifera on the Production Performance and Fecal Methanogenic Community of Lactating Dairy Cows vol.9, pp.5, 2002, https://doi.org/10.3390/ani9050262
  77. Effects of Phytonutrients on Ruminal Fermentation, Digestibility, and Microorganisms in Swamp Buffaloes vol.9, pp.9, 2002, https://doi.org/10.3390/ani9090671
  78. Initial effects of supplemental forages and feedstuffs on bovine rumen ecology in vitro as determined by DNA-based molecular procedures vol.48, pp.1, 2002, https://doi.org/10.1080/09712119.2020.1781648
  79. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants vol.7, pp.None, 2020, https://doi.org/10.3389/fvets.2020.00584
  80. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet–Microbe Interaction vol.7, pp.None, 2002, https://doi.org/10.3389/fvets.2020.575801
  81. Utilizing of Celery and Thyme as Ruminal Fermentation and Digestibility Modifier and Reducing Gas Production vol.15, pp.1, 2020, https://doi.org/10.3923/ijds.2020.22.27
  82. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community vol.103, pp.3, 2020, https://doi.org/10.3168/jds.2019-16611
  83. Effects of Piper sarmentosum extract supplementation on growth performances and rumen fermentation and microflora characteristics in goats vol.104, pp.2, 2002, https://doi.org/10.1111/jpn.13284
  84. The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives - A Review vol.20, pp.2, 2002, https://doi.org/10.2478/aoas-2020-0005
  85. Dietary rambutan peel powder as a rumen modifier in beef cattle vol.33, pp.5, 2002, https://doi.org/10.5713/ajas.19.0342
  86. Role of Caraway, Fennel and Melissa Addition on Productive Performance of Lactating Frisian Cows vol.23, pp.11, 2002, https://doi.org/10.3923/pjbs.2020.1380.1389
  87. Effect of mixture of herbal plants on ruminal fermentation, degradability and gas production vol.43, pp.None, 2021, https://doi.org/10.4025/actascianimsci.v43i1.48549
  88. Oregano Essential Oils Promote Rumen Digestive Ability by Modulating Epithelial Development and Microbiota Composition in Beef Cattle vol.8, pp.None, 2021, https://doi.org/10.3389/fnut.2021.722557
  89. Effect of extracts from baccharis, tamarind, cashew nut shell liquid and clove on animal performance, feed efficiency, digestibility, rumen fermentation and feeding behavior of bulls finished in feedl vol.244, pp.None, 2002, https://doi.org/10.1016/j.livsci.2020.104361
  90. Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle vol.8, pp.2, 2021, https://doi.org/10.3390/vetsci8020035
  91. Effects of plant extract supplementations or monensin on nutrient intake, digestibility, ruminal fermentation and metabolism in dairy cows vol.275, pp.None, 2021, https://doi.org/10.1016/j.anifeedsci.2021.114886
  92. Effect of essential oil blends and a nonionic surfactant on rumen fermentation, anti-oxidative status, and growth performance of lambs vol.5, pp.3, 2002, https://doi.org/10.1093/tas/txab118
  93. Nutritive value of sorghum silage for sheep vol.105, pp.6, 2002, https://doi.org/10.1111/jpn.13548
  94. Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance vol.20, pp.6, 2002, https://doi.org/10.1007/s11101-021-09739-3