DOI QR코드

DOI QR Code

Arsenic Trioxide Induces Apoptosis in Chronic Myelogenous Leukemia K562 Cells:Possible Involvement of p38 MAP Kinase

  • Shim, Moon-Jeong (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Kim, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Lee, In-Soo (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Choi, Hyun-Il (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Kim, Tae-Ue (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University)
  • Published : 2002.07.31

Abstract

Arsenic trioxide ($As_O_3$) was recently demonstrated to be an effective inducer of apoptosis in patients with relapsed acute promyelocytic leukemia (APL) as well as patients with APL in whom all-trans-retinoic acid and conventional chemotherapy failed. Chronic myelogenous leukemia cells are highly resistant to chemotherapeutic drugs. To determine if $As_O_3$ might be useful for the treatment of chronic myelogenous leukemia, we examined the ability of $As_O_3$ to induce apoptosis in K562 cells. In vitro cytotoxicity of $As_O_3$ was evaluated in K562 cells by a MTT assay: the $IC_50$ value for $As_O_3$ was determined to be $10\;{\mu}m$. When analyzed by agarose gel electorphoresis, the DNA fragments became evident after incubation of the cells with $20\;{\mu}m$ $As_O_3$ for 24 h. We also found morphological changes and chromatin condensation of the cells undergoing apoptosis. Activation of caspase-3 was observed 6 h after treatment with $20\;{\mu}m$ $As_O_3$ by a Western blot analysis. Next, we examined the MAP kinase-signaling pathway of $As_O_3$-induced apoptosis in K562 cells. $As_O_3$ at $10\;{\mu}m$ strongly induced the activation of p38, inhibited $As_O_3$ induced apoptotic cell death. These results suggest that $As_O_3$ is able to induce the apoptotic activity in K562 cells, and its apoptotic mechanism may be associated with the activation of p38.

Keywords

References

  1. Amarante-Mendes, G., McGahon, A, Nishioka, W, Afar, D., Witte, O. and Green, D. (1998) Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-$x_{L}$. Oncogene 16, 1383-1390. https://doi.org/10.1038/sj.onc.1201664
  2. Akao, Y., Mizoguchi, H., Kojima, S., Naoe, T., Ohishi, N. and Yagi, K (1998) Arsenic induces apoptosis in B-cell leukemic cell lines in vitro: activation of caspases and down-regulation of Bcl-2 protein. Br. J. Haematol. 102, 1055-1060. https://doi.org/10.1046/j.1365-2141.1998.00869.x
  3. Bazarbachi, A, EI-Sabban, M. E., Nasr, R., Quignon, E, Awaraji, C., Kersual, J., Dianoux, L., Zennati, Y., Haidar, J. H., Hennine, O. and de The, H. (1999) Arsenic trioxide and interferon-$\alpha$ synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transfonned cells. Blood 93, 278-283.
  4. Bradford, M. (1976) A rapid and sensitive method for the quantitation of micrograrn quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Butterfield, L., Storey, B., Maas, L. and Heasley, L. E. (1997) C-Jun $NH_{2}$-tenninal kinase regulation of the apoptotis response ofsmall cell lung cancer cells to ultraviolet radiation. J. Biol. Chem. 272, 10110-10116. https://doi.org/10.1074/jbc.272.15.10110
  6. Chen. G. Q., Zhu, J. and Shi, X. G. (1996) In vitro studies on cellular and molecular mechanism arsenic trioxide in the treatment of acute promyelocytic leukemia: $As_{2}$$O_{3}$ induces $NB_{4}$ cell apoptosis with down regulation of bcl-2 expression and modulation of PML-RAR$\alpha$ proteins. Blood 88, 1052-1061.
  7. Chen, G. Q., Shi, X. G., Tang, W, Xiong, S. M., Zhu, J., Cai, X., Han, Z. G., Ni, J. H., Shi, G. Y., Jia, P. M., Liu, M. M., He, K L., Niu, c., Ma, J., Zhang, P., Zhang, T. D., Paul, P., Naoe, T., Kitamura, K, Miller, W, Waxman, S., Wang, Z. Y., de The, H., Chen, S. J. and Chen, Z. (1997) Use of arsenic trioxide ($As_{2}O_{3}$) in the treatment of acute promyelocytic leukemia (APL): I. $As_{2}O_{3}$ Exerts dose-dependent dual effects on APL cells. Blood 89, 3345-3353.
  8. Eastman, A (1995) Survival factors, intracellular signal transduction, and the activation of endonucleases in apoptosis. Semin. Cancer BioI. 6, 45-52. https://doi.org/10.1006/scbi.1995.0006
  9. Graves, J. D., Draves, K E., Craxton, A, Saklatvala, J., Krebs, E. G. and Clark, E. A (1996) Involvement of stress-activated protein kinase and p38 mitogen-activated protein kinase in mlgM-induced apoptosis of human B Iymphocytes. Proc. Natl. Acad. Sci. USA 93, 13814-l3818. https://doi.org/10.1073/pnas.93.24.13814
  10. lwama, K, Nakajo, S., Aiuchi, T. and Nakaya, K (2001) Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the $CA^{2+}$-dependent production of superoxide. Int. J. Cancer 92, 518-526. https://doi.org/10.1002/ijc.1220
  11. Juo, P., Kuo, C. J., Reynolds, S. E., Konz, R. E, Raingeaud, J., Davis, R. J., Biemann, H. P. and Blenis, J. (1997) Fas activation of the p38 mitogen-activated protein kinase signaling pathway requires ICE/CED-3 family proteases. Mol. Cell Biol. 17, 24-35. https://doi.org/10.1128/MCB.17.1.24
  12. Kawasaki, H., Moriguchi, T. and Matsuda, S. (1996) Ras-dependent and Ras-independent pathway in the stress-activated-protein- kinase cascade. Eur. J. Biochem. 241, 315-321. https://doi.org/10.1111/j.1432-1033.1996.00315.x
  13. Kirn, H. H., Kim, H. M., Kwack, K B., Kim, S. Wand Lee, Z. H. (2001) Osteoclast differentiation factor engages the PI 3- kinase, p38, and ERK pathways for avian osteoclast differentiation. J. Biochem. Mol. Biol. 34,421-427.
  14. Kim, S. S., Kim, Y. S., Jung, Y. W, Choi, H. I., Shim, M. J. and Kim, T. U. (1999) Taxol-induced apoptosis and nuclear translocation of mitogen-activated protein (MAP) kinase in HeLa cells. J. Biochem. Mol. Biol. 32, 379-384.
  15. Lee, N. K, Kim, H. J., Yang, S. J., Kim, Y. S .. Choi, H. I., Shim, M. J., Awh, O. D. and Kim, T. U. (2001) The anticancer mechanism of taxol-diethylenetriamine pentaacetate conjugate in HT29 human colorectal cancer cells. J. Biochem. Mol. Biol. 34, 237-243.
  16. Lim, C. P., Jain, N. and Cao, X. (1998) Stress-induced immediately-early gene, egr-1, involves activation of p38/JNK1. Oncogene 16, 2915-2916. https://doi.org/10.1038/sj.onc.1201834
  17. Lu, M., Levin, J., Sulpice, E., Sequeira-Le, Grand, A, Alemany, M., Caen, J. P. and Han, Z. C. (1999) Effect of arsenic trioxide on viability, proliferation, and apoptosis in human megakaryocytic leukemia cell lines. Exp Hematol. 27, 845-852. https://doi.org/10.1016/S0301-472X(99)00014-4
  18. Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185. https://doi.org/10.1016/0092-8674(95)90401-8
  19. Molnar, A, Theodoras, A. M., Zon, L. I. and Kyriakis, J. M. (1997) Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cyele progression at G1/S through a mechanism requiring p38/ RK J. Biol. Chem.20, 13229-13235.
  20. Mu, Z. M., Chin, K V., Liu, J. W, Lozano, G. and Chang, K S. ( 1994) PML. A growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell BioI. 14, 6858-6867. https://doi.org/10.1128/MCB.14.10.6858
  21. Perkins, C., Kim, N. K, Fang, G. and Bhalla, K (2000) Arsenic induces apoptosis of multi-drug resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2 or Bcl-xL. Blood 95, 1014-1022.
  22. Rousselot, P., Labaume, S., Marolleau, J. P., Larghero, J., Noguera, M. H., Brouet, J. C. and Fennand, J. P. (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res. 59, 1041- 1048.
  23. Shao, W., Fenelli, M. and Ferrara, M. (1998) Arsenic trioxide as a inducer of apoptosis and loss of PML-RAR$\alpha$ protein in acute promyelocytic leukemia cells. J. Natl. Cancer Inst. 90, 124-133. https://doi.org/10.1093/jnci/90.2.124
  24. Shen, Z. X., Chen, G. Q., Ni, J. H., Li, X. S., Xiong, S. M., Qiu, Q. Y., Zhu, J., Tang, W., Sun, G. L., Yang, K Q., Chen, Y., Zhou, L., Fang, Z. w., Wang, Y. T., Ma, J., Zhang, T. D., Chen, S. J., Chen, Z. and Wang, Z. Y. (1997) Use of arsenic trioxide ($As_{2}O_{3}$) in the treatment of acute promyelocytic leukemia (APL): $\Pi$. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89, 3354-3360.
  25. So, E. Y., Jang, J. Y. and Lee, C. E. (2001) Cross-talk between STAT6 and Ras/MAPK pathway for the IL-4-mediate. J. Biochem. Mol. Biol. 34, 578-583.
  26. Soignet, S. L., Maslak, P., Wang, Z. G., Jhanwar, S., Calleja, E., Dardashti, L. J., Corso, D., DeBlasio, A, Gabrilove, J. L., Scheinberg, D. A, Pandolfi, P. P. and Warrell, R P. (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 339, 1341- 1348. https://doi.org/10.1056/NEJM199811053391901
  27. Wang, Z. G., Rivi, R, Delva, L., Konig, A, Scheinberg, D. A, Gambacorti, P. C., Gabrilove, J. L., Warrell, R P. and Pandolfi, P. P. (1998) Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARa independent manner. Blood 92, 1497-1504.
  28. Witte, O. N. (1999) Role of the BCR-ABL oncogene in human leukemia. Cancer Res. 53, 485-489.
  29. Xia, Z., Dickens, M, Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  30. Zhang, W., Ohnishi, K, Shigeno, K, Fujisawa, S., Naito, K, Nakamura, S., Takeshita, K, Takeshita, A and Ohno, R. (1998) The induction of apoptosis and cell cycle arrest by arsenic trioxide at clinically achievable concentrations. J. Natl. Cancer Inst. 91, 772-778.

Cited by

  1. Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity 2009, https://doi.org/10.1002/em.20505
  2. Arsenic trioxide induces cardiac fibroblast apoptosis in vitro and in vivo by up-regulating TGF-β1 expression vol.219, pp.3, 2013, https://doi.org/10.1016/j.toxlet.2013.03.024
  3. PDTC, metal chelating compound, induces G1 phase cell cycle arrest in vascular smooth muscle cells through inducing p21Cip1 expression: Involvement of p38 mitogen activated protein kinase vol.198, pp.2, 2004, https://doi.org/10.1002/jcp.10728
  4. Arsenic trioxide reduces drug resistance to adriamycin in leukemic K562/A02 cells via multiple mechanisms vol.65, pp.5, 2011, https://doi.org/10.1016/j.biopha.2011.04.016
  5. Syk is a novel target of arsenic trioxide (ATO) and is involved in the toxic effect of ATO in human neutrophils vol.24, pp.3, 2010, https://doi.org/10.1016/j.tiv.2009.11.011
  6. Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cδ vol.21, pp.7, 2007, https://doi.org/10.1038/sj.leu.2404735
  7. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus vol.256, pp.1, 2011, https://doi.org/10.1016/j.taap.2011.07.007
  8. Increased apoptotic efficacy of lonidamine plus arsenic trioxide combination in human leukemia cells. Reactive oxygen species generation and defensive protein kinase (MEK/ERK, Akt/mTOR) modulation vol.82, pp.11, 2011, https://doi.org/10.1016/j.bcp.2011.08.017
  9. Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatocellular transformation via activator protein 1 signaling pathway and cell cycle progression vol.69, pp.11, 2005, https://doi.org/10.1016/j.bcp.2005.03.008
  10. Resveratrol protects against arsenic trioxide-induced oxidative damage through maintenance of glutathione homeostasis and inhibition of apoptotic progression vol.56, pp.3, 2015, https://doi.org/10.1002/em.21919
  11. Arsenic trioxide: An anti cancer missile with multiple warheads vol.10, pp.3, 2005, https://doi.org/10.1080/10245330500067090
  12. Caspase-mediated Cell Death in Hematological Malignancies: Theoretical Considerations, Methods of Assessment, and Clinical Implications vol.44, pp.7, 2003, https://doi.org/10.1080/1042819031000077007
  13. Rasagenthi lehyam (RL) a novel complementary and alternative medicine for prostate cancer vol.54, pp.1, 2004, https://doi.org/10.1007/s00280-004-0770-9
  14. The two opposite facets of arsenic: toxic and anticancer drug pp.2013, 2013, https://doi.org/10.5339/jlghs.2013.1
  15. Knockdown of Acyl-CoA thioesterase 9 gene expression by siRNA confers resistance to arsenite in HEK293 cells vol.2, pp.6, 2015, https://doi.org/10.2131/fts.2.245
  16. Arsenic trioxide therapy in acute promyelocytic leukemia and beyond: from bench to bedside vol.45, pp.12, 2004, https://doi.org/10.1080/10428190412331272686
  17. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK) vol.220, pp.3, 2007, https://doi.org/10.1016/j.taap.2007.01.022
  18. The effect of nilotinib plus arsenic trioxide on the proliferation and differentiation of primary leukemic cells from patients with chronic myoloid leukemia in blast crisis vol.15, pp.1, 2015, https://doi.org/10.1186/s12935-015-0158-4
  19. Inhibition of mitogen-activated protein kinase kinase enhances apoptosis induced by arsenic trioxide in human breast cancer MCF-7 cells vol.32, pp.12, 2005, https://doi.org/10.1111/j.1440-1681.2005.04302.x
  20. Proliferation-Attenuating and Apoptosis-Inducing Effects of Tryptanthrin on Human Chronic Myeloid Leukemia K562 Cell Line in Vitro vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12063831
  21. Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues vol.38, pp.4, 2005, https://doi.org/10.5483/BMBRep.2005.38.4.474
  22. The role of Akt on Arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation vol.15, pp.5, 2005, https://doi.org/10.1038/sj.cr.7290305
  23. Therapeutic Effect of Arsenicum album on Leukocytes vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13033979
  24. Regulating expressions of cyclin D1, pRb, and anti-cancer effects of deguelin on human Burkitt's lymphoma Daudi cells in vitro1 vol.26, pp.7, 2005, https://doi.org/10.1111/j.1745-7254.2005.00104.x
  25. SUMO1 negatively regulates the transcriptional activity of EVI1 and significantly increases its co-localization with EVI1 after treatment with arsenic trioxide vol.1833, pp.10, 2013, https://doi.org/10.1016/j.bbamcr.2013.06.003
  26. Reliable Predictors of Arsenic Occurrence in the Southern Gulf Coast Aquifer of Texas vol.8, pp.5, 2018, https://doi.org/10.3390/geosciences8050155