DOI QR코드

DOI QR Code

Synthetic Bile Acids: Novel Mediators of Apoptosis

  • Kim, Nam-Deuk (Department of Pharmacy, Pusan National University, Pusan Cancer Research Center) ;
  • Im, Eun-Ok (Department of Pharmacy, Pusan National University, Pusan Cancer Research Center) ;
  • Choi, Yung-Hyun (Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, and Research Center for Oriental Medicine) ;
  • Yoo, Young-Hyun (Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Institute of Medical Science)
  • Published : 2002.01.31

Abstract

Keywords

References

  1. Baek, J. H., Kim, J., Kang, C., Lee, Y. S. and Kim, K. W. (1997) Induction of apoptosis by bile acids in HepG2 human hepatocellular carcinoma cells. Korean J. Physiol. Pharmacol. 1, 107-115.
  2. Berger, N. A. (1985) Poly(ADP-ribose) polymerase in the cellular response to DNA damage. Radiat. Res. 101,4-15. https://doi.org/10.2307/3576299
  3. Bernardi, P. and Petronilli, V. (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J. Bioenerg. Biomembr. 28, 131-138. https://doi.org/10.1007/BF02110643
  4. Blake J., Roberts, P. J., Faubion, W. A., Kominami, E. and Gores, G. J. (1998) Cystatin A expression reduces bile salt-induced apoptosis in a rat hepatoma cell line. Am. J. Physiol. 275, G723-G730.
  5. Brady, L. M., Beno, D. W. A. and Davis, B. H. (1996) Bile acid stimulation of early growth response gene and mitogen-activated protein kinase is protein kinase C-dependent. Biochem. J. 316, 756-769.
  6. Choi, Y. H., Im, E. O., Suh, H., Jin, Y., Lee, W. H., Yoo, Y. H., Kim, K. W. and Kim, N. D. (2001) Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases. Int. J. Oneol. 18, 979-984.
  7. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16. https://doi.org/10.1042/bj3260001
  8. Craven, P. A., Pfanstiel, J. and DeRubertis, F. R. (1987) Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. J. Clin. Invest. 79, 532-541. https://doi.org/10.1172/JCI112844
  9. Cristofano, A. D., Kotsi, P., Peng, Y. F., Cordon-Cardo, C., Elkon, K. B. and Pandolfi, P. P. (1999) Impaired Fas response and autoimmunity in Pten +/-mice. Science 285, 2122-2125. https://doi.org/10.1126/science.285.5436.2122
  10. Debruyne, P. R., Bruyneel, E. A., Li, X., Zimber, A., Gespach, C. and Mareel, M. M. (2001) The role of bile acids in carcinogenesis. Mutat. Res. 480-481, 359-369. https://doi.org/10.1016/S0027-5107(01)00195-6
  11. Di Toro, R., Campana, G., Murari, G. and Spampinato, S. (2000) Effects of specific bile acids on c-fos messenger RNA levels in human colon carcinoma Caco-2 cells. Eur. J. Pharm. Sci. 11, 291-298. https://doi.org/10.1016/S0928-0987(00)00111-1
  12. Earnest, D. L., Holubec, H., Wali, R. K., Jolley, C. S., Bissonette, M., Bhattacharyya, A. K., Roy, H., Khare, S. and Brasitus, T. A. (1994) Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res. 54, 5071-5074.
  13. Faubion, W. A., Guicciardi, M. E., Miyoshi, H., Bronk, S. F., Roberts, P. J., Svingen, P. A., Kaufmann, S. H. and Gores, G. J. (1999) Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest. 103, 137-145. https://doi.org/10.1172/JCI4765
  14. Fernandez, P. L., Jares, P., Rey, M. J., Campo, E. and Cardesa, A. (1998) Cell cycle regulators and their abnormalities in breast cancer. Mol. Pathol. 51,305-309. https://doi.org/10.1136/mp.51.6.305
  15. Findley, H. W., Gu, L., Yeager, A. M. and Zhou, M. (1997) Expression and regulation of Bel-2, Bel-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood 89, 2986-2993.
  16. Firtzer, C. J., O'Brian, C. A., Guillem, J. G. and Weinstein, I. B. (1987) The regulation of protein kinase C by chenodeoxycholate, deoxycholate and several structurally related bile acids. Carcinogenesis 8, 217-220. https://doi.org/10.1093/carcin/8.2.217
  17. Fraser, M. J., Tynan, S. J., Papaioannou, A., Ireland, C. M. and Pittman, S. M. (1996) Endo-exonuclease of human leukemic cells: evidence for a role in apoptosis. J. Cell Sci. 109, 2343- 2360.
  18. Gibbs, E., Kelman, Z., Gulbis, J. M., O'Donnell, M., Kuriyan, J., Burgers, P. M. J. and Hurwitz, J. (1997) The influence of the proliferating cell nuclear antigen-interacting domain of p21(CIPl) on DNA synthesis catalyzed by the human and Saccharomyces cerevisiae polymerase delta holoenzymes. J. BioI. Chem. 272, 2373-2381. https://doi.org/10.1074/jbc.272.4.2373
  19. Glinghammar, B., Holmberg, K. and Rafter, J. (1999) Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis 20, 969-976. https://doi.org/10.1093/carcin/20.6.969
  20. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  21. Heuman, D. M., Mills, A. S., McCall, J., Hylemon, P. B., Pandak, W. M. and Clahcevic, Z. R. (1991) Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. In vivo studies in the rat. Gastroenterology 100, 203-211. https://doi.org/10.1016/0016-5085(91)90602-H
  22. Heuman, D. M. and Bajaj, R. (1994) Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastorenterology 106, 1333-1341. https://doi.org/10.1016/0016-5085(94)90027-2
  23. Higuchi, H., Bronk, S. F., Takikawa, Y., Wernebrg, N., Takimoto, R., EI-Deiry, W. and Gores, G. J. (2001) The bile acid glycochenodeoxycholate induces TRAIL-receptor 2/DR5 expression and apoptosis. J. Biol. Chem. 276, 38610-38618. https://doi.org/10.1074/jbc.M105300200
  24. Hirano F., Tanada, H., Makino, Y., Okamoto, K., Hiramoto, M., Handa, H. and Makino,I. (1996) Induction of the transcription factor AP-1 in cultured human colon adenocarcinoma cells following exposure to bile acids. Carcinogenesis 17, 427-433. https://doi.org/10.1093/carcin/17.3.427
  25. Hofmann, A. F. (1984) Chemistry and enterohepatic circulation of bile acids Hepatology 4, (suppl.), 4S-14S. https://doi.org/10.1002/hep.1840040803
  26. Huang, P., Ballal, K. and Plunkett, W. (1997) Biochemical characterization of the protein activity responsible for high molecular weight DNA fragmentation during drug-induced apoptosis. Cancer Res. 57, 3407-3414.
  27. Huang, X. P., Fan, X. T., Dexjeux, J. F. and Vastagna, M. (1992) Bile acids, non-phorbol-ester-type tumor promoters, stimulate the phosphorylation of protein kinase C substrates in human platelets and colon cell line HT29. Int. J. Cancer 52, 444-450. https://doi.org/10.1002/ijc.2910520319
  28. Hui, A. M., Makuuchi, M. and Li, X. (1998) Cell cycle regulators and human hepatocarcinogenesis. Hepatogastroenterology 45, 1635-1642.
  29. Hunter, T. (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225- 236. https://doi.org/10.1016/0092-8674(95)90405-0
  30. Im, E. O., Lee, S., Suh, H., Kim, K. W., Bae, Y. T. and Kim, N. D. (1999) A novel ursodeoxycholic acid derivative induces apoptosis in human MCF-7 breast cancer cells. Pharm. Pharmacol. Commun. 5, 293-298. https://doi.org/10.1211/146080899128734875
  31. Im, E. O., Choi, Y. H., Paik, K. J., Suh, H., Jun, Y., Kim, K. W., Yoo, Y. H. and Kim, N. D. (2001) Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells. Cancer Lett. 163. 83-93. https://doi.org/10.1016/S0304-3835(00)00671-6
  32. Kim, D. K., Lee, J. R., Kim, A., Lee, A., Yoo, M. A., Kim, K. W., Kim, N. D. and Suh, H. (1999) Inhibition of initiation of SlIman virus 40 DNA replication in vitro by the ursodexocycholic acid and its derivatives. Cancer Lett. 146, 147-153. https://doi.org/10.1016/S0304-3835(99)00251-7
  33. Konopleva, M., Zhao, S., Xie, Z., Segall, H., Younes, A., Claxton, D. F., Estrov, Z., Kornblau, S. M. and Andreeff, M. (1999) Apoptosis. Molecules and mechanisms. Adv. Exp. Med BioI. 457,217-236. https://doi.org/10.1007/978-1-4615-4811-9_24
  34. Kroemer, G., Zarnzami, N. and Susin, S. A. (1997) Mitochondrial control of apoptosis. Immunol. Today 18, 44-51. https://doi.org/10.1016/S0167-5699(97)80014-X
  35. Kraemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
  36. Kwo, P., Patel, T., Bronk, S. F. and Gores, G. J. (1995) Nuclear serine protease activity contributes to bile acid-induced apoptosis in hepatocytes. Am. J. Physiol. 268, 613-621.
  37. LaRue, J. M., Stratagoules, E. D. and Martinez, J. D. (2000) Deoxycholic acid-induced apoptosis is switched to necrosis by bcl-2 or calphostin C. Cancer Lett. 152, 107-113. https://doi.org/10.1016/S0304-3835(99)00439-5
  38. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  39. Li, R., Waga, S., Hannon, G. J., Beach, D. and Stillman, B. (1994) Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371, 534-537. https://doi.org/10.1038/371534a0
  40. Li, M., Kondo, T., Zhao, Q. L., Li, F. J., Tanabe, K., Arai, Y., Zhou, Z. C. and Kasuya, M. (2000) Apoptosis induced by cadmium in human lymphoma U937 cells through $Ca^{2+}$-calpain and caspase-mitochondria-dependent pathways. J. Biol. Chem. 275, 39702-39709. https://doi.org/10.1074/jbc.M007369200
  41. Mahmoud, N. N., Dannenberg, A. J., Bilinski, R. T., Mestre, J. R., Chadbum, A., Churchill, M., Martucci, C. and Bertagnolli, M. M. (1999) Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis 20, 299-303. https://doi.org/10.1093/carcin/20.2.299
  42. Makishima, M., Okamoto, A. Y., Repa, J. J., Tu, H., Learned, R. M., Luk, A., Hull, M. V., Lustig, K. D., Mangelsdorf, D. J. and Shan, B. (1999) Identification of a nuclear receptor for bile acids. Science 284, 1362-1365. https://doi.org/10.1126/science.284.5418.1362
  43. Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185. https://doi.org/10.1016/0092-8674(95)90401-8
  44. Martinez, J. D., Stratagoules, E. D., LaRue, J. M., Powell, A. A., Gause, P. R., Craven, M. T., Payne, C. M., Powell, M. B., Gerner, E. W. and Earnest, D. L. (1998) Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr. Cancer 31, 111-118. https://doi.org/10.1080/01635589809514689
  45. Martinez-Diez, M. C., Serrano, M. A., Monte, M. J. and Marin, J. J. (2000) Comparison of the effects of bile acids on cell viability, and DNA synthesis by rat hepatocytes in primary culture. Biochim. Biophys. Acta 1500, 153-160. https://doi.org/10.1016/S0925-4439(99)00099-X
  46. Misra, S., Ujhazy, P., Gatrnaitan, Z., Vanicovski, L. and Arias, I. M. (1998) The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem. 273, 26638-26644. https://doi.org/10.1074/jbc.273.41.26638
  47. Miyoshi, H., Rust, C., Rober, P. J., Burgan, L. J. and Gore, G. J. (1999) Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 117, 669-677. https://doi.org/10.1016/S0016-5085(99)70461-0
  48. Mohammad, R. M., Varterasian, M. L., Almatchy, V. P., Hannoudi, G. N., Pettit, G. R. and AI-Katib, A. (1998) Successful treatment of human chronic lymphocytic leukemia xenografts with combination biological agents auristatin PE and bryostatin 1. Clin. Cancer Res. 4, 1337-1343.
  49. Morgan, W. A., Shanna, P., Kaler, B. and Bach, P. H. (1997) The modulation of protein kinase C by bile salts. Biochem. Soc. Trans. 25, 75S. https://doi.org/10.1042/bst025075s
  50. Neamati, N., Fernandez, A., Wright, S., Kiefer, J. and McConkey, D. J. (1995) Degradation of lamin Bl precedes oligonueleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei. J. Immunol. 154, 3788-3795.
  51. Nigg, E. A. (1995) Cyelin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17, 471-480. https://doi.org/10.1002/bies.950170603
  52. Oberhammer, F.A., Hochegger, K., Froschl, G., Tiefenbacher, R. and Pavelka, M. (1994) Chromatin condensation during apoptosis in accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J. Cell BioI. 126, 827-837. https://doi.org/10.1083/jcb.126.4.827
  53. Park, Y. H., Kim, J., Baek, J., Jung, E., Kim, T., Suh, H., Park, M. H. and Kim, K. W. (1997) Induction of apoptosis in HepG2 human hepatocellular carcinoma cells by a novel derivative of ursodeoxycholic acid (UDCA). Arch. Pharm. Res. 20, 29-33. https://doi.org/10.1007/BF02974038
  54. Parks, D. J., Blanchard, S. G., Bledsoe, R. K., Chandra, G., Consler, T. G., Kliewer, S. A., Stimmel, J. B., Willson, T. M., Zavacki, A. M., Moore, D. D. and Lehmann, J. M. (1999) Bile acids: natural ligands for an orphan nuelear receptor. Science 284, 1365-1368. https://doi.org/10.1126/science.284.5418.1365
  55. Patel, T., Bronk, S. F. and Gores, G. J. (1994) Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. J. Clin. Invest. 94, 2183-2192. https://doi.org/10.1172/JCI117579
  56. Patel, T., Roberts, L. R., Jones, B. A. and Gores, G. J. (1998) Dysregulation of apoptosis as a mechanism of liver disease: an overview. Semin. Liver Dis. 18, 105-114. https://doi.org/10.1055/s-2007-1007147
  57. Payne, C. M., Crowley, C., Washo-Stultz, D., Briehl, M., Bernstein, H., Bernstein, C., Beard, S., Holubec, H. and Wameke, J. (1998) The stress-response proteins poly(ADP-ribose) polymerase and $NF-{\kappa}B$ protect against bile salt-induced apoptosis. Cell Death Differ. 5, 623-636. https://doi.org/10.1038/sj.cdd.4400395
  58. Pines, J. (1995) Cyelins and cyelin-dependent kinases: a biochemical view. Biochem. J. 308, 697-711. https://doi.org/10.1042/bj3080697
  59. Porsch Hallstrom, I., Svensson, D. and Blanck, A. (1991) Sex-differentiated deoxycholic acid promotion of rat liver carcinogenesis is under pituitary control. Carcinogenesis 12, 2035-2040. https://doi.org/10.1093/carcin/12.11.2035
  60. Powell, A. A., LaRue, J. M., Batta, A. K. and Martinez, J. D. (2001) Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells. Biochem. J. 356, 481-486. https://doi.org/10.1042/0264-6021:3560481
  61. Powolny, A., Xu, J. and Loo, G. (2001) Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell. Biol. 33, 193-203. https://doi.org/10.1016/S1357-2725(00)00080-7
  62. Qiao, D., Chen, W., Stratagoules, E. D. and Martinez, J. D. (2000) Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J. BioI. Chem. 275, 15090-15098. https://doi.org/10.1074/jbc.M908890199
  63. Qiao, D., Stratagouleas, E. D. and Martinez, J. D. (2001a) Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis 22, 35-41. https://doi.org/10.1093/carcin/22.1.35
  64. Qiao, L., Studer, E., Leach, K., McKinstry, R., Gupta, S., Decker, R., Kukreja, R., Valerie, K., Nagarkatti, P., EI Deiry, W., Molkentin, J., Schmidt-Ullrich, R., Fisher, P. B., Grant, S., Hylemon, P. B. and Dent, P. (2001b) Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol. BioI. Cell 12, 2609-2645.
  65. Rodrigues, C. M. P., Fan, G., Ma, X., Kren, B. T. and Steer, C. J. (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101, 2790-2799. https://doi.org/10.1172/JCI1325
  66. Rosen, A. and Casciola-Rosen, L. (1997) Macromolecular substrates for the ICE-like proteases during apoptosis. J. Cell Biochem. 64, 50-54. https://doi.org/10.1002/(SICI)1097-4644(199701)64:1<50::AID-JCB8>3.0.CO;2-Z
  67. Rust, C., Karnitz, L. M., Paya, C. V., Moscat, J., Simari, R. D. and Gores, G. J. (2000) The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J. BioI. Chem. 275, 20210-20216. https://doi.org/10.1074/jbc.M909992199
  68. Salomons, G. S., Brady, H. J., Verwijs-Janssen, M., Van Den Berg, J. D., Hart, A. A., Behrendt, H., Hahlen, K. and Smets, L. A. (1997) The Bax alpha: Bel-2 ratio modulates the response to dexamethasone in leukemic cells and is highly variable in childhood acute leukemia. Int. J. Cancer 71, 959- 965. https://doi.org/10.1002/(SICI)1097-0215(19970611)71:6<959::AID-IJC9>3.0.CO;2-X
  69. Sherr, C. J. and Roberts, J. M. (1995) Inhibitors of mammalian G1 cyelin-dependent kinases. Genes Dev. 9,1149-1163. https://doi.org/10.1101/gad.9.10.1149
  70. Silva, R. F., Rodrigues, C. M. and Brites, D. (2001) Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol. 34, 402-408. https://doi.org/10.1016/S0168-8278(01)00015-0
  71. Sodeman, T., Bronk, S. F., Roberts, P. J., Miyoshi, H. and Gores, G. J. (2000) Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am. J. Physiol. Gastrointest. Liver Physiol. 278, 992-999. https://doi.org/10.1152/ajpgi.2000.278.6.G992
  72. Song, C. S., Echchgadda, I., Baek, B. S., Ahn, S. C., Oh, T., Roy, A. K. and Chatterjee, B. (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile Acid activated famesoid x receptor. J. BioI. Chem 276, 42549-42556. https://doi.org/10.1074/jbc.M107557200
  73. Suh, H., Jung, E. J., Kim, T. H., Lee, H. Y., Park, Y. H. and Kim, K. W. (1997) Anti-angiogenic activity of ursodeoxycholic acid and its derivatives. Cancer Lett. 113, 117-122. https://doi.org/10.1016/S0304-3835(97)04604-1
  74. Susin, S. A., Lorenzo, H. K., Zarnzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. https://doi.org/10.1038/17135
  75. Takai, Y., Kaibuchi, K., Tsuda, T., Yamashita, T., Kikuchi, A., Tanimoto, T. and Hoshijima, M. (1986) Possible modes of action of growth factors and tumor promoters in the activation of the c-myc gene in Swiss 3T3 fibroblasts (in Japanese). Gan To Kagaku Ryoho 13, 798-805.
  76. Wali, R. K., Frawley, B. P., Jr, Hartmann, S., Roy, H. K., Khare, S., Scaglione-Sewell, B. A., Eamest, D. L., Sitrin, M. D., Brasitus, T. A. and Bisonnette, M. (1995) Mechanism of action of chemoprotective usrodeoxycholate in the azoxymethane model of rat colonic carcinogenesis: potential roles of protein kinase C. Cancer Res. 55, 5257-5264.
  77. Wang, C., Mayo, M. W. and Baldwin, A. S. Jr. (1996) TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of $NF-{\kappa}B$.Science 274, 784-787. https://doi.org/10.1126/science.274.5288.784
  78. Wang, H., Chen, J., Hollister, K., Sowers, L. C. and Forman, B. M. (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543-553.
  79. Ward, N. E. and OBrian, C. A. (1988) The bile acid analog fusidic acid can replace phosphatidylserine in the activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate in vitro. Carcinogenesis 9, 1451-1454. https://doi.org/10.1093/carcin/9.8.1451
  80. Yao, R. and Cooper, G. M. (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003-2006. https://doi.org/10.1126/science.7701324
  81. Yerushalmi, B., Dahl, R, Devereaux, M. W., Gumpricht, E. and Sokol, R. J. (2001) Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33, 616-626. https://doi.org/10.1053/jhep.2001.22702
  82. Yoon, H. S., Rho, J. H., Yoo, K. W., Park, W. C., Rho, S. H., Choi, Y. H., Suh, H., Kim, N. D., Yoo, K. S. and Yoo, Y. H. (2001) Synthetic bile acid derivatives induce nonapoptotic death of human retinal pigment epithelial cells. Curr. Eye Res. 22, 367-374. https://doi.org/10.1076/ceyr.22.5.367.5499
  83. Zhang, F., Subbaramaiah, K., Altorki, N. and Dannenberg, A. J. (1998) Dihydroxy bile acid activate the transcription of cycloxygenase-2. J. BioI. Chem. 273, 2424-2428. https://doi.org/10.1074/jbc.273.4.2424
  84. Zheng, Z., Bernstein, H., Bernstein, C., Payne, C. M., Martinez, J. D. and Gerner, E. W. (1996) Bile acid activation of the gadd153 promoter and of p53-independent apoptosis: relevance to colon cancer. Cell Death Differ. 3, 407-414.

Cited by

  1. Anticancer steroids: linking natural and semi-synthetic compounds vol.30, pp.2, 2013, https://doi.org/10.1039/C2NP20082A
  2. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles vol.1828, pp.8, 2013, https://doi.org/10.1016/j.bbamem.2013.04.003
  3. Synthetic chenodeoxycholic acid derivative HS-1200-induced apoptosis of p815 mastocytoma cells is augmented by co-treatment with lactacystin vol.14, pp.3, 2003, https://doi.org/10.1097/00001813-200303000-00005
  4. Bile acid toxicity structure–activity relationships: Correlations between cell viability and lipophilicity in a panel of new and known bile acids using an oesophageal cell line (HET-1A) vol.18, pp.18, 2010, https://doi.org/10.1016/j.bmc.2010.07.030
  5. Dietary fat’gene interactions in cancer vol.26, pp.3-4, 2007, https://doi.org/10.1007/s10555-007-9075-x
  6. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism vol.49, pp.3, 2016, https://doi.org/10.5483/BMBRep.2016.49.3.188
  7. Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids vol.52, 2012, https://doi.org/10.1016/j.ejmech.2012.03.020
  8. Absorption-Enhancing Effects of Bile Salts vol.20, pp.8, 2015, https://doi.org/10.3390/molecules200814451
  9. Synthetic bile acid derivatives induce apoptosis through a c-Jun N-terminal kinase and NF-κB-dependent process in human cervical carcinoma cells vol.229, pp.1, 2005, https://doi.org/10.1016/j.canlet.2004.11.055