DOI QR코드

DOI QR Code

Role of Amino Acid Residues within the Disulfide Loop of Thanatin, a Potent Antibiotic Peptide

  • Lee, Myung-Kyu (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cha, Li-Na (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Si-Hyung (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hahm, Kyung-Soo (Research Center for Proteineous Materials, Chosun University)
  • Published : 2002.05.31

Abstract

Thanatin, a 21-residue peptide, is an inducible insect peptide with a broad range of activity against bacteria and fungi. It has a C-terminal disulfide loop, like the frog skin secretion antimicrobial peptides of the brevinin family. In this study, we tried to find the effect of a number of amino acids between the disulfide bond. Thanatin showed stronger antibacterial activity to Gram negative bacteria than other mutants, except Th1; whereas, the mutant peptides with deletion had higher activity to Gram positive bacteria than thanatin. An increase in the number of amino acid(s) using the alanine residue decreased the antibacterial activity in all of the bacteria. Th1 with deletion of threonine at position 15 ($Thr^{15}$) showed similar antibacterial activity against Gram-negative bacteria, but had higher activity against the Gram positive bacteria. In order to study the structure-function relationship, we measured liposome disruption by the peptides and CD spectra of the peptides. Th1 also showed the highest liposome leaking activity and α-helical propensity in the sodium dodecyl sulfate solution, compared with other peptides. Liposome disruption activity was closely correlated with the anti-Gram positive bacterial activity. All of the peptides showed no hemolytic activity. Th1 was considered to be useful as an antimicrobial peptide with broad spectrum without toxicity.

Keywords

References

  1. Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344. https://doi.org/10.1016/S0145-305X(99)00015-4
  2. Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. and Tempst, P. (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387-2391.
  3. Clark, D. P., Durell, S., Maloy, W. L. and Zasloff, M. (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J. Biol. Chem. 269, 10849-10855.
  4. Fehlbaum, P., Bulet, P., Chernysh, S., Briand, J. P., Roussel, J. P., Letellier, L., Hetru, C. and Hoffmann, J. A. (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93, 1221-1225. https://doi.org/10.1073/pnas.93.3.1221
  5. Hoffmann, J. A. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7, 4-10. https://doi.org/10.1016/0952-7915(95)80022-0
  6. Hoffmann, J. A. and Hetru, C. (1992) Insect defensins: inducible antibacterial peptides. Immunol. Today 13, 411-415. https://doi.org/10.1016/0167-5699(92)90092-L
  7. Hoffmann, J. A., Reichhart, J. M. and Hetru, C. (1996) Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8-13. https://doi.org/10.1016/S0952-7915(96)80098-7
  8. Kang, J. H., Lee, M. K., Kim, K. L. and Hahm, K. S. (1996) Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int. J. Pept. Prof. Res. 48, 357-363.
  9. Kwon, M. Y., Hong, S. Y. and Lee, K. H. (1998) Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim. Biophys. Acta 1387, 239-248. https://doi.org/10.1016/S0167-4838(98)00123-X
  10. Lee, M. K., Kim, K. L. and Hahm, K. S. (1994) Antigenic properties of the pre-S2 region of the HBsAg against anti-HBsAg mouse polyclonal antibodies. J. Biochem. Mol. Biol. 27, 80-85.
  11. Lee, Y. J., Chung, T. J., Park, C. W., Hahn, Y., Chung, J. H., Lee, B. L., Han, D. M., Jung, Y. H., Kim, S. and Lee, Y. (1996) Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Commun. 218, 6-11. https://doi.org/10.1006/bbrc.1996.0002
  12. Mandard, N., Sodano, P., Labbe, H., Bonmatin, J. M., Bulet, P., Hetru, C., Ptak, M. and Vovelle, F. (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur. J. Biochem. 256, 404-410. https://doi.org/10.1046/j.1432-1327.1998.2560404.x
  13. Merrifield, B. (1986) Solid phase synthesis. Science 232, 341-347. https://doi.org/10.1126/science.3961484
  14. Morikawa, N., Hagiwara, K. and Nakajima, T. (1992) Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun. 189, 184-190. https://doi.org/10.1016/0006-291X(92)91542-X
  15. Park, J. M., Jung, J. E. and Lee, B. J. (1994) Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem. Biophys. Res. Commun. 205, 948-954. https://doi.org/10.1006/bbrc.1994.2757
  16. Simmaco, M., Mignogna, G., Barra, D. and Bossa, F. (1993) Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta. FEBS Lett. 324, 159-161. https://doi.org/10.1016/0014-5793(93)81384-C
  17. Shin, S. Y., Kang, J. H., Jang, S. Y., Kim, K. L. and Hahm, K. S. (2000a) Structure and antibiotic activity of a porcine myeloid antibacterial peptide, PMAP-23 and its analogues. J. Biochem. Mol. Biol. 33, 49-53.
  18. Shin, S. Y., Kang, J. H., Jang, S. Y., Kim, Y. M., Kim, K. L. and Hahm, K. S. (1999a) Effects of hinge region of cecropin A(1- 8)-melittin(1-12) a synthetic antimicrobial peptide in antibacterial, antitumor and vehicle-disrupting activity. J. Biochem. Mol. Biol. 32, 561-566.
  19. Shin, S. Y., Kang, J. H., Lee, D. G., Jang, S. Y., Seo, M. Y., Kim, K. L. and Hahm K. S. (1999b) Structure and antibiotic activity relationships of brevinin-1 and thanatin containing Rana box. Korean J. Appl. Microbiol. Biotechnol. 27, 440-445.
  20. Shin, S. Y., Park, J. H., Lee, M. K., Jang, S. Y. and Hahm, K. S. (2000b) Characterization of KI-24, a novel murine monoclonal antibody with specific reactivity for the human immunodeficiency virus-1 p24 protein. J. Biochem. Mol. Biol. 33, 92-95.
  21. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. and Boman, H. G. (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248. https://doi.org/10.1038/292246a0
  22. Zasloff, M., Martin, B. and Chen, H. C. (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. USA 85, 910-913. https://doi.org/10.1073/pnas.85.3.910

Cited by

  1. WITHDRAWN: Bioactive peptides derived from meat proteins 2012, https://doi.org/10.1016/j.peptides.2012.07.007
  2. Mimicking and Understanding the Agglutination Effect of the Antimicrobial Peptide Thanatin Using Model Phospholipid Vesicles vol.54, pp.25, 2015, https://doi.org/10.1021/acs.biochem.5b00442
  3. Antimicrobial Peptides: Versatile Biological Properties vol.2013, 2013, https://doi.org/10.1155/2013/675391
  4. Subacute toxicity of antimicrobial peptide S-thanatin in ICR mice vol.36, pp.1, 2012, https://doi.org/10.1016/j.peptides.2012.04.005
  5. NMR based structure–activity relationship analysis of an antimicrobial peptide, thanatin, engineered by site-specific chemical modification: Activity improvement and spectrum alteration vol.369, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2008.02.057
  6. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33 vol.95, pp.5, 2012, https://doi.org/10.1007/s00253-011-3816-z
  7. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides vol.107, pp.1, 2008, https://doi.org/10.1016/j.foodchem.2007.08.036
  8. vol.60, pp.7, 2016, https://doi.org/10.1128/AAC.00041-16