DOI QR코드

DOI QR Code

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min (Medicinal Resources Research Center (MRRC), Wonkwang University) ;
  • Pae, Hyun-Ock (Medicinal Resources Research Center (MRRC), Wonkwang University) ;
  • Jang, Seon-Il (Department of Microbiology and Immunology, Wonkwang University, School of Medicine) ;
  • Kim, Young-Myeong (Department of Molecular and Cellular Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Chung, Hun-Taeg (Medicinal Resources Research Center (MRRC), Wonkwang University)
  • Published : 2002.01.31

Abstract

Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

Keywords

References

  1. Albina, J. E., Cui, S., Mateo, R. B. and Reichner, J. S. (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. lmmunol. 150,5080-5085.
  2. Ashkenazi, A. and Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305-1308. https://doi.org/10.1126/science.281.5381.1305
  3. Assefa, Z., Vantieghem, A., Garmyn, M., Declercq, W., Vandenabeele, P., Vandenheede, J. R., Bouillon, R., Merlevede, W. and Agostinis, P. (2000) p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis. J. Biol. Chem. 275, 21416-21421. https://doi.org/10.1074/jbc.M002634200
  4. Beauvais, F., Michel, L. and Dubertret, L. (1995) The nitric oxide donors, azide and hydroxylamine, inhibit the programmed cell death of cytokine-deprived human eosinophils. FEBS Lett. 361, 229232.
  5. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803-815. https://doi.org/10.1016/S0092-8674(00)81265-9
  6. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl- D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162-7166. https://doi.org/10.1073/pnas.92.16.7162
  7. Boese, M., Mordvintcev, P. I., Vanin A. F., Busse, R. and Mulsch, A. (1995) S-nitrosation of serum albumin by dinitrosyl-iron complex. J. BioI. Chem. 270,29244-29249. https://doi.org/10.1074/jbc.270.49.29244
  8. Bose. R., Verheij, M., Haimovitz-Friedman. A., Scotto, K., Fuks, Z. and Kolesnick, R. (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405-414. https://doi.org/10.1016/0092-8674(95)90429-8
  9. Brockhaus, F. and Brune, B. (1999) p53 accumulation in apoptotic macrophages is an energy demanding process that precedes cytochrome c release in response to nitric oxide. Oncogene 18, 6403-6410. https://doi.org/10.1038/sj.onc.1203058
  10. Brown, G. C. and Borutaite, V. (1999) Nitric oxide, cytochrome c and mitochondria. Biochem. Soc. Symp. 66, 17-25. https://doi.org/10.1042/bss0660017
  11. Brookes, P. S., Salinas, E. P., Darley-Usmar, K., Eiserich, J. P., Freeman, B. A. and Darley-Usmar, V. M. (2000) Concentration-dependent effects of rutnc oxide on mitochondrial permeability transition and cytochrome c release. J. BioI. Chem 275, 20474-20479. https://doi.org/10.1074/jbc.M001077200
  12. Brune, B., Gotz, C., Messmer, U. K., Sandau, K., Hirvonen, M. R. and Lapetina, E. G. (1997) Superoxide formation and macrophage resistance to nitric oxide-mediated apoptosis. J. BioI. Chem. 272,7253-7258. https://doi.org/10.1074/jbc.272.11.7253
  13. Brune, B., Messmer, U. K. and Sandau, K. (1995) The role of nitric oxide in cell injury Toxicol. Lett. 82/83, 233-237.
  14. Cai, L., Klein, J. B. and Kang, Y. J. (2000) Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J. BioI. Chem. 275, 38957-38960. https://doi.org/10.1074/jbc.C000593200
  15. Casciola-Rosen, L., Nicholson, D. W., Chong, T., Rowan, K. R., Thornberry, N. A, Miller, D. K and Rosen, A. (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. 183, 1957-1964. https://doi.org/10.1084/jem.183.5.1957
  16. Ceneviva, G. D., Tzeng, E., Hoyt, D. G., Yee, E., Gallagher, A., Engelhardt, J. F., Kim, Y. M., Billiar, T. R., Watkins, S. A and Pitt, B. R. (1998) Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am. J. Physiol. 275, L717-L728
  17. Chang, Y., Abe, A. and Shayman, J. A. (1995) Ceramide formation during heat shock: a potential mediator of alpha B-crystallin transcription. Proc. Natl. Acad. Sci. USA 92, 12275- 12279. https://doi.org/10.1073/pnas.92.26.12275
  18. Chiche, J. D., Schlutsmeyer, S. M., Bloch, D. B., de la Monte, S. M., Roberts, J. D., Filippov, G., Janssens, S. P., Rosenzweig, A. and Bloch, K. D. (1998) Adenovirus-mediated gene transfer of cGMP-dependent protein kinase increases the sensitivity of cultured vascular smooth muscle cells to the antiproliferative and pro-apoptotic effects of nitric oxide/cGMP. J. BioI. Chem. 273, 34263-34271. https://doi.org/10.1074/jbc.273.51.34263
  19. Chinnaiyan, A. M., ORourke, K., Tewari, M. and Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. https://doi.org/10.1016/0092-8674(95)90071-3
  20. Chun, S. Y., Eisenhauer, K. M., Kubo, M. and Hsueh, A. J. (1995) Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136, 3120-3127. https://doi.org/10.1210/en.136.7.3120
  21. Cui, S., Reichner, J. S., Mateo, R. B. and Albina, J. E. (1994) Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Res. 54, 2462-2467.
  22. De Nadai, C., Sestili, P., Cantoni, O., Lievremont, J. P., Sciorati, C., Barsacchi, R., Moncada, S., Meldolesi, J. and Clementi, E. (2000) Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide. Proc. Natl. Acad. Sci. USA 97, 5480-5485. https://doi.org/10.1073/pnas.070062397
  23. Dimmelder, S., Haendeler, J., Nehls, M. and Zeiher, A. M. (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601607.
  24. Di, Nardo, A., Benassi, L., Magnoni, C., Cossarizza, A., Seidenari, S. and Giannetti, A. (2000) Ceramide 2 (N-acetyl sphingosine) is associated with reduction in Bcl-2 protein levels by Western blotting and with apoptosis in cultured human keratinocytes. Br. J. Derrnatol. 143, 491-497. https://doi.org/10.1111/j.1365-2133.2000.03700.x
  25. Drapier, J. C. and Hibbs J. B. (1986) Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J. Clin. Invest. 78, 790-797. https://doi.org/10.1172/JCI112642
  26. Drapier, J. C., Wietzerbin, J. and Hibbs, J. B. (1988) Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur. J. Immunol. 18, 1587-1592. https://doi.org/10.1002/eji.1830181018
  27. Estevez, A. G., Spear, N., Thompson,J. A., Cornwell, T. L., Radi, R., Barbeito, L. and Beckman, J. S. (1998) Nitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor. J. Neurosci. 18, 3708-3714. https://doi.org/10.1523/JNEUROSCI.18-10-03708.1998
  28. Fehsel, K., Kroncke, K. D., Meyer, K. L., Huber, H., Wahn, V. and Kolb-Bachofen, V. (1995) Nitric oxide induces apoptosis in mouse thymocytes. J. Immunol. 155,2858-2865.
  29. Forrester, K., Ambs, S., Lupoid, S. E., Kapust, R. B., Spillare, E. A., Weinberg, W. c., Felley-Bosco, E. Wang, X. w., Geller, D. A., Tzeng, E., Billiar, T. R. and Harris, C. C. (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl. Acad. Sci. USA 93, 2442-2447. https://doi.org/10.1073/pnas.93.6.2442
  30. Genaro, A. M., Hortelano, S., Alvarez, A., Martinez, C. and Bosca, L. (1995) Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J. Clin. Invest. 95, 18841890.
  31. Green, D. R. (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1-4. https://doi.org/10.1016/S0092-8674(00)00003-9
  32. Hannun, Y. A. (1994) The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125- 3128.
  33. Hebestreit, H., Dibbert, B., Balatti, I., Braun, D., Schapowal, A., Blaser, K and Simon, H. U. (1998) Disruption of fas receptor signaling by nitric oxide in eosinophils. J. Exp. Med. 187, 415- 425. https://doi.org/10.1084/jem.187.3.415
  34. Heneka, M. T., Loschrnann, P. A., Gleichmann, M., Weller, M., Schulz, J. B., Wullner, U. and Klockgether, T. (1998) Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-alpha/lipopolysaccharide. J. Neurochem 71, 88-94. https://doi.org/10.1046/j.1471-4159.1998.71010088.x
  35. Hsu, H., Xiong, J. and Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504. https://doi.org/10.1016/0092-8674(95)90070-5
  36. Huang, C., Ma, Wy., Ding, M., Bowden, G. T. and Dong, Z. (1997) Direct evidence for an important role of sphingomyelinase in ultraviolet-induced activation of c-Jun N-terminal kinase. J. Biol. Chem. 272, 27753-27757. https://doi.org/10.1074/jbc.272.44.27753
  37. Hur, G. H., Kim, Y. B. and Shin, S. H. (1998) 2-chloroethyl Sulfide Induces Apoptosis and Necrosis in Thymocytes. J. Biochem. Mol. Biol. 31, 183-188.
  38. Huwiler, A., Pfeilschifter, J. and van den Bosch, H. (1999) Nitric oxide donors induce stress signaling via ceramide fonnation in rat renal mesangial cells. J. Biol. Chem. 274, 7190-7195. https://doi.org/10.1074/jbc.274.11.7190
  39. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. and Chaudhuri G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265-9269. https://doi.org/10.1073/pnas.84.24.9265
  40. Jacotot, E., Costantini, P., Laboureau, E., Zamzami, N., Susin, S. A. and Kroemer, G. (1999) Mitochondrial membrane penneabilization during the apoptotic process. Ann. N. Y. Acad. Sci. 887, 18-30. https://doi.org/10.1111/j.1749-6632.1999.tb07919.x
  41. Jun, C. D., Oh, C. D., Kwak, H. J., Pae, H. O. Yoo, J. C., Choi, B. M., Chun, J. S., Park, R. K. and Chung H. T. (1999a) Overexpression of protein kinase C isoforrns protects RAW 264.7 macrophages from nitric oxide-induced apoptosis: involvement of c-Jun N-terminal kinase/stress-activated protein kinase, p38 kinase, and CPP-32 protease pathways. J. Irnrnunol. 162, 3395-34Ol.
  42. Jun, C. D., Pae, H. O., Kwak, H. J., Yoo, J. C., Choi, B. M., Oh, C. D., Chun, J. S., Paik, S. G., Park, Y. H. and Chung, H. T. (1999b) Modulation of nitric oxide-induced apoptotic death of HL-60 cells by protein kinase C and protein kinase A through mitogen-activated protein kinases and CPP32-like protease pathways. Cell Immunol. 194, 36-46. https://doi.org/10.1006/cimm.1999.1480
  43. Kim, H., Shim, J., Han, P.L. and Choi, E. J. (1997a) Nitric oxide modulates the c-Jun N-terrninal kinase/stress-activated protein kinase activity through activating c-Jun N-terminal kinase. Biochemistry 36, 13677-13681. https://doi.org/10.1021/bi970837f
  44. Kim, H. Y. (1995) Ginsenoside RgI stimulates nitric oxide release in pulmonary artery endothelial cells in culture. J. Biochem. Mol. Biol. 28, 301-305.
  45. Kim, S. S., Kim, Y. S., Jung, Y. W., Choi, H. I., Shim, M. J. and Kim, T. U. (1999a) Taxol-induced apoptosis and nuclear transloation of mitogen-activated protein (MAP) kinase in HeLa Cells. J. Biochem. Mol. BioI. 32, 379-384.
  46. Kim, T. H., Zhao, Y., Barber, M. J., Kuharsky, D. K and Ym, X. M. (2000a) Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial penneability transition pore and Bax. J. Biol. Chem. 275, 39474-39481. https://doi.org/10.1074/jbc.M003370200
  47. Kim, Y. M., Bergonia, H. and Lancaster, J. R. (1995a) Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 374, 228-232. https://doi.org/10.1016/0014-5793(95)01115-U
  48. Kim, Y. M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D. and Lancaster, J. R. Jr. (1995) Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. BioI. Chem. 270, 5710-5713. https://doi.org/10.1074/jbc.270.11.5710
  49. Kim, Y. M., Chung, H. T., Kim, S. S., Han, J. A., Yoo, Y. M., Kim, K.M., Lee, G. H., Yun, H. Y., Green, A., Li, J., Simmons, R. L. and Billiar, T. R. (1999) Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J. Neurosci. 19, 6740-6747.
  50. Kim, Y. M., Chung, H. T., Simmons, R. L. and Billiar, T. R. (2000b) Cellular non-heme iron content is a determinant of mtnc oxide-mediated apoptosis, necrosis, and caspase inhibition. J. Biol. Chem. 275, 10954-10961. https://doi.org/10.1074/jbc.275.15.10954
  51. Kim, Y. M., de Vera, M. E., Watkins, S. C. and Billiar, T. R. (1997b) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J. Biol. Chem. 272, 1402-1411. https://doi.org/10.1074/jbc.272.2.1402
  52. Kim, Y. M., Kim, T. H., Chung, H. T., Talanian, R. V., Ym, X. M. and Billiar, T. R. (2000c) Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through Snitrosylation of caspase-8. Hepatology 32, 770-778. https://doi.org/10.1053/jhep.2000.18291
  53. Kim, Y. M., Kim, T. H., Seol, D. W., Talanian, R. V. and Billiar, T. R. (1998) Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J. BioI. Chem. 273, 31437-31441. https://doi.org/10.1074/jbc.273.47.31437
  54. Kim, Y. M., Talanian, R. V. and Billiar, T. R. (1997c) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. BioI. Chem. 272, 3113831148. https://doi.org/10.1074/jbc.272.49.31138
  55. Kolb, J. P. (2000) Mechanisms involved in the pro- and antiapoptotic role of NO in human leukemia. Leukemia 14, 1685- 1694. https://doi.org/10.1038/sj.leu.2401896
  56. Kolesnick, R. and Golde, D. W. (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77, 325-328. https://doi.org/10.1016/0092-8674(94)90147-3
  57. Kroemer, G., Petit, P. X., Zarnzami, N., Vayssiere, J. L. and Mignotte, B. (1995) The biochemistry of programmed cell death. FASEB J. 9, 1277-1287. https://doi.org/10.1096/fasebj.9.13.7557017
  58. Kronke, K-D., Fehsel, K and Kolb-Bachofen, V. (1995) Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. BioI. Chem. Hoppe-Seyler 376, 327-343.
  59. Kwon, Y. G., Min, J. K, Kim, K. M., Lee, D. J., Billiar, T. R. and Kim, Y. M. (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. BioI. Chem. 276, 10627-33. https://doi.org/10.1074/jbc.M011449200
  60. Lander, H. M., Jacovina, A. T., Davis, R. J. and Tauras, J. M. (1996) Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J. BioI. Chem. 271, 19705-19709. https://doi.org/10.1074/jbc.271.33.19705
  61. Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. https://doi.org/10.1016/S0092-8674(00)81590-1
  62. Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. https://doi.org/10.1016/S0092-8674(00)81590-1
  63. Li, J., Billiar, T. R., Talanian, R. V. and Kim, Y. M. (1997b) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240,419- 424. https://doi.org/10.1006/bbrc.1997.7672
  64. Li, J., Yang, S. and Billiar, T. R. (2000) Cyclic nucleotides suppress tumor necrosis factor alpha-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J. BioI. Chem. 275, 13026-13034. https://doi.org/10.1074/jbc.275.17.13026
  65. Li, Y., Maher, P. and Schubert, D.(1997a) Requirement for cGMP in nerve cell death caused by glutathione depletion. J. Cell Biol. 139, 1317-1324. https://doi.org/10.1083/jcb.139.5.1317
  66. Lin, K. T., Xue, J. Y., Nomen, M., Spur, B. and Wong, P. Y. (1995) Peroxynitrite-induced apoptosis in HL-60 cells. J. Biol. Chem. 270, 16487-16490. https://doi.org/10.1074/jbc.270.28.16487
  67. Liu, D., Pavlovic, D., Chen, M. C., Flodstrom, M., Sandler, S. and Eizirik, D. L. (2000) Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isofonn of nitric oxide synthase (iNOS-/-). Diabetes 49,1116-1122. https://doi.org/10.2337/diabetes.49.7.1116
  68. Liu, Z. G., Hsu, H., Goeddel, D. V. and Karin, M. (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87, 565-576. https://doi.org/10.1016/S0092-8674(00)81375-6
  69. Loweth, A. C., Williams, G. T., Scarpello, J. H. and Morgan, N. G. (1997) Evidence for the involvement of cGMP and protein kinase G in nitric oxide-induced apoptosis in the pancreatic B-cell line, HIT-Tl5. FEBS Lett. 400, 285-288. https://doi.org/10.1016/S0014-5793(96)01392-0
  70. Lui, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  71. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  72. Madesh, M., Ramachandran, A. and Balasubramanian, K. A. (1999) Nitric oxide prevents anoxia-induced apoptosis in colonic HT29 cells. Arch. Biochem. Biophys. 366, 240-248. https://doi.org/10.1006/abbi.1999.1185
  73. Mannick, J. B., Asano, K., Izumi, K., Kieff, E. and Stamler, J. S. (1994) Nitric oxide produced by human B-Iymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79, 1137- 1146. https://doi.org/10.1016/0092-8674(94)90005-1
  74. Mathias, S., Pena, L. A and Kolesnick, R. N. (1998) Signal transduction of stress via ceramide. Biochem. J. 335, 465-480. https://doi.org/10.1042/bj3350465
  75. McDaniel, M. L., Corbett, J. A., Kwon, G. and Hill, J. R. (1997) A role for nitric oxide and other inflammatory mediators in cytokine-induced pancreatic beta-cell dysfunction and destruction. Adv. Exp. Med. BioI. 426, 313-319. https://doi.org/10.1007/978-1-4899-1819-2_41
  76. Messmer, U. K. and Brune, B. (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signaling pathways. Biochem J. 319, 299-305. https://doi.org/10.1042/bj3190299
  77. Messmer, U. K., Lapetina, E. G. and Brune B. (1995) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compounds. Mol. Pharmacol. 47, 757-765.
  78. Messmer, U. K., Reimer, D. M., Reed, J. C. and Brune, B. (1996) Nitric oxide induced poly(ADP-ribose) polymerase cleavage in RAW 264.7 macrophage apoptosis is blocked by Bcl-2. FEBS Lett. 384, 162-166. https://doi.org/10.1016/0014-5793(96)00311-0
  79. Minden, A., Lin, A., Claret, F. X., Abo, A. and Karin, M. (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147-1157. https://doi.org/10.1016/S0092-8674(05)80019-4
  80. Moncada, S. Palmer, R. M. J. and Higgs, E. A (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
  81. Mortensen, K., Skouv, J., Hougaard, D. M. and Larsson, L. I. (1999) Endogenous endothelial cell nitric-oxide synthase modulates apoptosis in cultured breast cancer cells and is transcriptionally regulated by p53. J. BioI. Chem. 274, 37679- 37684. https://doi.org/10.1074/jbc.274.53.37679
  82. Mosser, D. D., Caron, A. W., Bourget, L., Meriin, A. B., Sherman, M. Y., Morimoto, R. I. and Massie B. (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell BioI. 20, 7146-7159.
  83. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni J. Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer P. H., Peter, M. E. and Dixit, V. M. (1996) FLICE, a novel FADD-homologous ICE/CED-3- like protease, is recruited to the CD95 (Fast/APO-1) death--inducing signaling complex. Cell 85, 817-827. https://doi.org/10.1016/S0092-8674(00)81266-0
  84. Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  85. Noack, E. and Murphy, M. (1991) Oxidative stress; in Oxidants and Antioxidants, Sies, H. (ed.), pp. 445-489, Academic Press, San Diego, California.
  86. Oh-hashi, K., Maruyama, W, Yi, H., Takahashi, T., Naoi, M. and Isobe, K. (1999) Mitogen-activated protein kinase pathway mediates peroxynitrite-induced apoptosis in human doparninergic neuroblastoma SH-SY5Y cells. Biochem. Biophys. Res. Commun. 263, 504-509. https://doi.org/10.1006/bbrc.1999.1237
  87. Ou, J., Carlos, T. M., Watkins, S. C., Saavedra, J. E., Keefer, L. K., Kim, Y. M., Harbrecht, B. G. and Billiar, T. R. (1997) Differential effects of nonselective nitric oxide synthase (NOS) and selective inducible NOS inhibition on hepatic necrosis, apoptosis, ICAM-1 expression, and neutrophil accumulation during endotoxemia. Nitric Oxide 1, 404-416. https://doi.org/10.1006/niox.1997.0136
  88. Palmer, R. M., Rees, D. D., Ashton, D. S. and Moncada, S. (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 153, 1251-1256. https://doi.org/10.1016/S0006-291X(88)81362-7
  89. Pastorino, J. G., Tafani, M., Rothman, R. J., Marcinkeviciute, A., Hoek, J. B., Farber, J. L. and Marcineviciute, A. (1999) Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. BioI. Chem. 274, 31734-31739. https://doi.org/10.1074/jbc.274.44.31734
  90. Poderoso, J. J., Carreras, M. C., Lisdero, C., Riobo, N., Schopfer, F. and Boveris A. (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328, 85-92. https://doi.org/10.1006/abbi.1996.0146
  91. Rossig, L., Haendeler, J., Hermann, C., Malchow, P., Urbich, C., Zeiher, A. M. and Dimmeler S. (2000) Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J. BioI. Chem. 275, 25502-25507. https://doi.org/10.1074/jbc.M002283200
  92. Saavedra, J. E., Billiar, T. R., Williams, D. L., Kim, Y. M., Watkins, S. C. and Keefer, L. K. (1997) Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alpha-induced apoptosis and toxicity in the liver. J. Med. Chem. 40, 1947- 1954. https://doi.org/10.1021/jm9701031
  93. Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99. https://doi.org/10.1038/34214
  94. Saleh, A., Srinivasula, S. M., Balkir, L., Robbins, P. D. and Alnemri E. S. (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell BioI. 2, 476-483. https://doi.org/10.1038/35019510
  95. Salgo, M. G., Squadrito, G. L. and Pryor W. A. (1995) Peroxynitrite causes apoptosis in rat thymocytes .Biochem. Biophys. Res. Commun. 215, 1111-1118. https://doi.org/10.1006/bbrc.1995.2578
  96. Sata, M., Kakoki, M., Nagata, D., Nishimatsu, H., Suzuki, E., Aoyagi, T., Sugiura, S., Kojima, H., Nagano, T., Kangawa, K., Matsuo, H., Ornata, M., Nagai, R and Hirata, Y. (2000) Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism. Hypertension 36, 83-88. https://doi.org/10.1161/01.HYP.36.1.83
  97. Sawada, M., Nakashima, S., Banno, Y., Yamakawa, H., Hayashi, K., Takenaka, K., Nishimura, Y., Sakai, N. and Nozawa, Y. (2000) Ordering of cerarnide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ. 7, 761-772. https://doi.org/10.1038/sj.cdd.4400711
  98. Schmidt, H. H. H. W. (1992) NO, CO and OH: Endogenous soluble guanylyl cyclase-activating factors. FEBS Lett. 307, 102-107. https://doi.org/10.1016/0014-5793(92)80910-9
  99. Schmidt, H. H. H. W., Lohmann, S. M., and Walter, U. (1993) The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim. Biophys. Acta 1178, 153-175. https://doi.org/10.1016/0167-4889(93)90006-B
  100. Schmidt, H. H. H. W. and Walter U. (1994) NO at work. Cell 78, 919-925. https://doi.org/10.1016/0092-8674(94)90267-4
  101. Schubert, K. M., Scheid, M. P. and Duronio, V. (2000) Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J. Biol. Chem. 275, 13330-13335. https://doi.org/10.1074/jbc.275.18.13330
  102. Shimojo, T., Hiroe, M., Ishiyama, S., Ito, H., Nishikawa, T. and Mammo, F. (1999) Nitric oxide induces apoptotic death of cardiomyocytes via a cyclic-GMP-dependent pathway. Exp. Cell Res. 247, 38-47. https://doi.org/10.1006/excr.1998.4310
  103. Soh, J. W., Mao, Y., Kim, M. G., Pamukcu, R., Li, H., Piazza, G. A., Thompson, W. J. and Weinstein, I. B. (2000) Cyclic GMP mediates apoptosis induced by sulindac derivatives via activation of c-Jun NH2-terminal kinase 1. Clin. Cancer Res. 6, 4136-4141.
  104. Stamler, J. S. (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931-936. https://doi.org/10.1016/0092-8674(94)90269-0
  105. Strum, J. C., Small, G. W., Pauig, S. B. and Daniel, L. W. (1994) 1-beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J. BioI. Chem. 269, 15493-15497.
  106. Susin, S. A., Lorenzo, H. K., Zamzarni, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397,441-446. https://doi.org/10.1038/17135
  107. Taimor, G., Hofstaetter, B. and Piper, H. M. (2000) Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia. Cardiovasc. Res. 45, 588-594. https://doi.org/10.1016/S0008-6363(99)00272-2
  108. Takeda, Y., Tashima, M., Takahashi, A., Uchiyama, T. and Okazaki, T. (1999) Cerarnide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J. BioI. Chem. 274, 10654- 10660. https://doi.org/10.1074/jbc.274.15.10654
  109. Tamatani, M., Ogawa, S., Niitsu, Y. and Tohyama, M. (1998) Involvement of Bcl-2 family and caspase-3-like protease in NO-mediated neuronal apoptosis. J. Neurochem. 71, 1588- 1596. https://doi.org/10.1046/j.1471-4159.1998.71041588.x
  110. Tamir, S., deRojas-Walker, T., Wishnok, J. S. and Tannenbaum, S. R. (1996) DNA damage and genotoxicity by nitric oxide. Methods Enzymol. 269, 230-243. https://doi.org/10.1016/S0076-6879(96)69025-9
  111. Tepper, C. G., Jayadev, S., Liu, B., Bielawska, A., Wolff, R., Yonehara, S., Hannun, Y. A. and Seldin, M. F. (1995) Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 92, 8443-8447. https://doi.org/10.1073/pnas.92.18.8443
  112. Thompson, C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462. https://doi.org/10.1126/science.7878464
  113. Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312-1316. https://doi.org/10.1126/science.281.5381.1312
  114. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A, Bar-Sagi, D., Jones, S. N., Flavell, R. A. and Davis, R. J. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874. https://doi.org/10.1126/science.288.5467.870
  115. Tzeng, E., Kim, Y. M., Pitt, B. R., Lizonova, A., Kovesdi, I. And Billiar, T. R. (1997) Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis. Surgery 122, 255-263. https://doi.org/10.1016/S0039-6060(97)90016-7
  116. Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., Haimovitz-Friedman, A., Fuks, Z. and Kolesnick, R. N. (1996) Requirement for cerarnide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 380, 75-79. https://doi.org/10.1038/380075a0
  117. Wang, J., Zhen, L., Klug, M. G., Wood, D., Wu, X. and Mizrahi, J. (2000) Involvement of caspase 3- and 8-like proteases in cerarnide-induced apoptosis of cardiomyocytes. J. Card. Fail. 6, 243-249. https://doi.org/10.1054/jcaf.2000.9502
  118. Wyllie, A. H., Kerr, J. F. R. and Currie, A. R. (1980) Cell death: the significance of apoptosis Int. Rev. Cytol. 68, 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  119. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A.M., Cai, J., Peng, T. I., Jones, D. P. and Wang X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked Science 275, 1129-1132. https://doi.org/10.1126/science.275.5303.1129

Cited by

  1. Aminoguanidine Changes Hippocampal Expression of Apoptosis-Related Genes, Improves Passive Avoidance Learning and Memory in Streptozotocin-Induced Diabetic Rats vol.34, pp.3, 2014, https://doi.org/10.1007/s10571-013-0018-5
  2. A calcium-insensitive attenuated nitrosative stress response contributes significantly in the radioresistance of Sf9 insect cells vol.43, pp.9, 2011, https://doi.org/10.1016/j.biocel.2011.05.012
  3. Antioxidant defense system in rats simultaneously intoxicated with agrochemicals vol.28, pp.3, 2009, https://doi.org/10.1016/j.etap.2009.07.009
  4. Photoinduced Nitric Oxide Release from a Nitrobenzene Derivative in Mitochondria vol.17, pp.17, 2011, https://doi.org/10.1002/chem.201001967
  5. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages vol.156, 2014, https://doi.org/10.1016/j.jep.2014.07.054
  6. Role of Oxidative Stress in Pancreatic Inflammation vol.11, pp.1, 2009, https://doi.org/10.1089/ars.2008.2109
  7. Mechanism of dihydrofolate reductase downregulation in melanoma by 3-O-(3,4,5-trimethoxybenzoyl)-(−)-epicatechin vol.110, pp.6, 2010, https://doi.org/10.1002/jcb.22656
  8. Rooperol as an antioxidant and its role in the innate immune system: An in vitro study vol.144, pp.3, 2012, https://doi.org/10.1016/j.jep.2012.10.014
  9. Subtle interplay of endogenous bioactive gases (NO, CO and H2S) in inflammation vol.32, pp.8, 2009, https://doi.org/10.1007/s12272-009-1806-9
  10. Salivary immunity in elderly individuals presented with Candida-related denture stomatitis vol.29, pp.2, 2012, https://doi.org/10.1111/j.1741-2358.2011.00476.x
  11. Real-time imaging of nitric oxide production in living cells with 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacence by invert fluorescence microscope vol.16, pp.1, 2007, https://doi.org/10.1016/j.niox.2006.05.003
  12. Netrin-1 improves post-injury cardiac function in vivo via DCC/NO-dependent preservation of mitochondrial integrity, while attenuating autophagy vol.1852, pp.2, 2015, https://doi.org/10.1016/j.bbadis.2014.06.005
  13. Mitochondrial Regulation of Cell Cycle and Proliferation vol.16, pp.10, 2012, https://doi.org/10.1089/ars.2011.4085
  14. Neuroprotective actions of aminoguanidine involve reduced the activation of calpain and caspase-3 in a rat model of stroke vol.56, pp.4, 2010, https://doi.org/10.1016/j.neuint.2010.01.009
  15. Regulatory Role of Nitric Oxide in Neutrophil Apoptosis vol.146, pp.6, 2008, https://doi.org/10.1007/s10517-009-0386-5
  16. Studies on Immunoregulatory Effects of Bowon-tang in the Immune Cells vol.28, pp.4, 2015, https://doi.org/10.6114/jkood.2015.28.4.092
  17. Nitric oxide-mediated apoptosis in rat macrophages subjected to Shiga toxin 2 from Escherichia coli vol.55, pp.4, 2011, https://doi.org/10.1111/j.1348-0421.2011.00310.x
  18. Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress vol.32, pp.8, 2009, https://doi.org/10.1007/s12272-009-1807-8
  19. Nω-Nitro-L-Arginine Methylester Ameliorates Myocardial Toxicity Induced by Doxorubicin vol.36, pp.6, 2003, https://doi.org/10.5483/BMBRep.2003.36.6.593
  20. Promoter polymorphism (−786t>C) in the endothelial nitric oxide synthase gene is associated with risk of sporadic breast cancer in non-Hispanic white women age younger than 55 years vol.107, pp.9, 2006, https://doi.org/10.1002/cncr.22269
  21. Apoptotic Effect of Sasa quelpaertensis Nakai in Human Colon Cancer HT-29 Cells vol.24, pp.9, 2014, https://doi.org/10.5352/JLS.2014.24.9.1012
  22. New method for analyzing the nitrite level in PC12 cells using capillary electrophoresis vol.1014, pp.1-2, 2003, https://doi.org/10.1016/S0021-9673(03)00943-9
  23. d-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats vol.38, pp.3, 2010, https://doi.org/10.1007/s00726-009-0288-x
  24. The effect of acrylamide and nitric oxide donors on human mesenchymal progenitor cells vol.26, pp.6, 2012, https://doi.org/10.1016/j.tiv.2012.04.016
  25. Integrative investigation of Semen Strychni nephrotoxicity and the protective effect of Radix Glycyrrhizae by a UPLC-MS/MS method based cell metabolomics strategy in HEK 293t cell lysates vol.5, pp.73, 2015, https://doi.org/10.1039/C5RA07708G
  26. NSAIDs, Mitochondria and Calcium Signaling: Special Focus on Aspirin/Salicylates vol.3, pp.5, 2010, https://doi.org/10.3390/ph3051594
  27. Histological and Immunohistochemical Basis of the Effect of Aminoguanidine on Renal Changes Associated with Hemorrhagic Shock in a Rat Model vol.50, pp.1, 2017, https://doi.org/10.1267/ahc.16025
  28. Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF-κB activation in RAW264.7 macrophages activated with LPS vol.52, pp.9, 2008, https://doi.org/10.1002/mnfr.200700333
  29. Polymeric glycoconjugates protect and activate macrophages to promote killing of Bacillus cereus spores during phagocytosis vol.25, pp.5, 2008, https://doi.org/10.1007/s10719-007-9097-1
  30. Protective effects of nutritional supplementation with arginine and glutamine on the penis of rats submitted to pelvic radiation vol.2, pp.6, 2014, https://doi.org/10.1111/andr.134
  31. Regulation of Cell Survival, Apoptosis, and Epithelial-to-Mesenchymal Transition by Nitric Oxide-Dependent Post-Translational Modifications 2017, https://doi.org/10.1089/ars.2017.7072
  32. Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation vol.189, pp.6, 2008, https://doi.org/10.1007/s00203-008-0352-z
  33. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer vol.52, 2016, https://doi.org/10.1016/j.niox.2015.09.005
  34. PKCδ mediates Nrf2-dependent protection of neuronal cells from NO-induced apoptosis vol.386, pp.4, 2009, https://doi.org/10.1016/j.bbrc.2009.06.129
  35. Meconium-induced release of nitric oxide in rabbit alveolar cells vol.28, 2008, https://doi.org/10.1038/jp.2008.170
  36. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling vol.152, pp.6, 2007, https://doi.org/10.1038/sj.bjp.0707409
  37. The NO stimulator, Catestatin, improves the Frank–Starling response in normotensive and hypertensive rat hearts vol.50, 2015, https://doi.org/10.1016/j.niox.2015.07.004
  38. Real-time imaging of viable-apoptotic switch in GSNO-induced mouse thymocyte apoptosis vol.11, pp.8, 2006, https://doi.org/10.1007/s10495-006-7804-1
  39. Ceramide induces early and late apoptosis in human papilloma virus+ cervical cancer cells by inhibiting reactive oxygen species decay, diminishing the intracellular concentration of glutathione and increasing nuclear factor-??B translocation vol.18, pp.2, 2007, https://doi.org/10.1097/CAD.0b013e3280115111
  40. Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection vol.0, pp.0, 2008, https://doi.org/10.1111/j.1462-5822.2007.01049.x
  41. Mechanisms of Cell Death in Oxidative Stress vol.9, pp.1, 2007, https://doi.org/10.1089/ars.2007.9.49
  42. Apoptotic neuronal death in Parkinson's disease: Involvement of nitric oxide vol.54, pp.2, 2007, https://doi.org/10.1016/j.brainresrev.2007.02.001
  43. A novel mitochondria-localizing nitrobenzene derivative as a donor for photo-uncaging of nitric oxide vol.21, pp.7, 2011, https://doi.org/10.1016/j.bmcl.2011.02.027
  44. Protein S-nitrosylation: Role for nitric oxide signaling in neuronal death vol.1820, pp.6, 2012, https://doi.org/10.1016/j.bbagen.2011.07.010
  45. The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects vol.4, pp.1, 2016, https://doi.org/10.1016/j.cpme.2016.05.001
  46. Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice vol.35, pp.3, 2014, https://doi.org/10.1016/j.neurobiolaging.2013.09.002
  47. Do ATP and NO interact in the CNS? vol.84, pp.1, 2008, https://doi.org/10.1016/j.pneurobio.2007.10.004
  48. Human Periosteal Derived Stem Cell Potential: The Impact of age vol.11, pp.3, 2015, https://doi.org/10.1007/s12015-014-9559-3
  49. The Potential Role of Nitric Oxide Synthase in Survival and Regeneration of Magnocellular Neurons of Hypothalamo-Neurohypophyseal System vol.34, pp.11, 2009, https://doi.org/10.1007/s11064-009-9965-0
  50. Activation of cloned BKCa channels in nitric oxide-induced apoptosis of HEK293 cells vol.15, pp.4, 2010, https://doi.org/10.1007/s10495-009-0423-x
  51. Combining glial cell line-derived neurotrophic factor gene delivery (AdGDNF) with l-arginine decreases contusion size but not behavioral deficits after traumatic brain injury vol.1403, 2011, https://doi.org/10.1016/j.brainres.2011.05.058
  52. Fibrosis and Loss of Smooth Muscle in the Corpora Cavernosa Precede Corporal Veno-Occlusive Dysfunction (CVOD) Induced by Experimental Cavernosal Nerve Damage in the Rat vol.6, pp.2, 2009, https://doi.org/10.1111/j.1743-6109.2008.01105.x
  53. Attenuation of Rotenone-Induced Mitochondrial Oxidative Damage and Neurotoxicty in Drosophila melanogaster Supplemented with Creatine vol.35, pp.9, 2010, https://doi.org/10.1007/s11064-010-0198-z
  54. cGMP-independent anti-apoptotic effect of nitric oxide on thapsigargin-induced apoptosis in the pancreatic β-cell line INS-1 vol.83, pp.25-26, 2008, https://doi.org/10.1016/j.lfs.2008.10.002
  55. Autophagy and Heart Failure: A Possible Role for Homocysteine vol.62, pp.1, 2012, https://doi.org/10.1007/s12013-011-9281-6
  56. Nitrate in drinking water and bladder cancer risk in Spain vol.137, 2015, https://doi.org/10.1016/j.envres.2014.10.034
  57. NOS2 (iNOS) Deficiency in Kidney Donor Accelerates Allograft Loss in a Murine Model vol.7, pp.1, 2007, https://doi.org/10.1111/j.1600-6143.2006.01558.x
  58. Nitric Oxide Mechanism of Protection in Ischemia and Reperfusion Injury vol.22, pp.1, 2009, https://doi.org/10.1080/08941930802709470
  59. The anandamide effect on NO/cGMP pathway in human platelets vol.112, pp.3, 2011, https://doi.org/10.1002/jcb.23008
  60. L-Arginine Ameliorates Kidney Function and Urinary Bladder Sensitivity in Experimentally-induced Renal Dysfunction in Rats vol.36, pp.4, 2003, https://doi.org/10.5483/BMBRep.2003.36.4.373
  61. No association of the eNOS gene polymorphisms with survival in patients with colorectal cancer vol.28, pp.4, 2011, https://doi.org/10.1007/s12032-010-9647-4
  62. Association of eNOS polymorphisms (-786T>C, 4a4b, 894G>T) with colorectal cancer susceptibility in the Korean population vol.512, pp.2, 2013, https://doi.org/10.1016/j.gene.2012.10.032
  63. Effect of Sagunja-tang on Immune Function of Mouse Immune Cells vol.28, pp.3, 2015, https://doi.org/10.6114/jkood.2015.28.3.014
  64. Labile iron pool and ferritin content in developing rat brain γ-irradiated in utero vol.30, pp.3, 2009, https://doi.org/10.1016/j.neuro.2009.02.008
  65. Possible Relation between the NOS3 Gene GLU298ASP Polymorphism and Bladder Cancer in Turkey vol.14, pp.2, 2013, https://doi.org/10.7314/APJCP.2013.14.2.665
  66. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine vol.12, pp.11, 2007, https://doi.org/10.1007/s10495-007-0129-x
  67. Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke vol.54, pp.5-6, 2009, https://doi.org/10.1016/j.neuint.2008.12.017
  68. Nitrite modulates contractility of teleost (Anguilla anguilla and Chionodraco hamatus, i.e. the Antarctic hemoglobinless icefish) and frog (Rana esculenta) hearts vol.1787, pp.7, 2009, https://doi.org/10.1016/j.bbabio.2009.03.008
  69. Killing of Bacillus spores is mediated by nitric oxide and nitric oxide synthase during glycoconjugate–enhanced phagocytosis vol.27, pp.1, 2010, https://doi.org/10.1007/s10719-009-9248-7
  70. Calcium and Reactive Oxygen Species in Acute Pancreatitis: Friend or Foe? vol.15, pp.10, 2011, https://doi.org/10.1089/ars.2011.3983
  71. Expression of Leptin and Its Functional Receptor on Disc Cells vol.33, pp.23, 2008, https://doi.org/10.1097/BRS.0b013e31818338e5
  72. The role of nitric oxide in mediating tumour blood flow vol.10, pp.5, 2006, https://doi.org/10.1517/14728222.10.5.689
  73. L-type Ca2+ channels: A new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells vol.47, pp.4, 2010, https://doi.org/10.1016/j.molimm.2009.10.013
  74. Heterogeneous effects of distinct tocopherol analogues on NO release, cell volume, and cell death in microglial cells vol.86, pp.16, 2008, https://doi.org/10.1002/jnr.21811
  75. An intron 4 VNTR polymorphism of the endothelial nitric oxide synthase gene is associated with early-onset colorectal cancer vol.124, pp.7, 2009, https://doi.org/10.1002/ijc.24114
  76. Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells vol.45, pp.11, 2013, https://doi.org/10.1016/j.biocel.2013.07.015
  77. Palmitate-induced NO production has a dual action to reduce cell death through NO and accentuate cell death through peroxynitrite formation vol.78, pp.2, 2008, https://doi.org/10.1016/j.plefa.2007.09.003
  78. Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells vol.18, pp.5, 2011, https://doi.org/10.1038/cdd.2010.169
  79. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells vol.15, pp.3, 2014, https://doi.org/10.1038/ni.2806
  80. Regulatory role of nitric oxide in the reduced survival of erythrocytes in visceral leishmaniasis vol.1800, pp.9, 2010, https://doi.org/10.1016/j.bbagen.2010.05.008
  81. Nitric oxide and oral cancer: A review vol.48, pp.6, 2012, https://doi.org/10.1016/j.oraloncology.2012.01.003
  82. Nitric oxide: emerging concepts about its use in cell-based therapies vol.16, pp.1, 2007, https://doi.org/10.1517/13543784.16.1.33
  83. Neuroprotective Effect of Chuk-Me-Sun-Dan on NMDA- and AMPA-Evoked Nitric Oxide Synthase Activity in Mouse Brain vol.27, pp.3, 2005, https://doi.org/10.1080/08923970500242319
  84. Nitric oxide differentially regulates the gene expression of caspase genes but not some autophagic genes vol.16, pp.3, 2007, https://doi.org/10.1016/j.niox.2006.10.007
  85. B1 cells produce nitric oxide in response to a series of toll-like receptor ligands vol.261, pp.2, 2010, https://doi.org/10.1016/j.cellimm.2009.11.009
  86. Effect of chronic intraperitoneal aminoguanidine on memory and expression of Bcl-2 family genes in diabetic rats vol.94, pp.6, 2016, https://doi.org/10.1139/cjpp-2015-0357
  87. Evaluation of the role of nitric oxide in acid sensing ion channel mediated cell death vol.22, pp.3, 2010, https://doi.org/10.1016/j.niox.2009.12.006
  88. The possible therapeutic effect of ‘Chaetomium globosum’ fungal extract on experimentally induced rheumatoid arthritis vol.36, pp.4, 2013, https://doi.org/10.1097/01.EHX.0000440708.76464.de
  89. Interaction of the HMG-CoA Reductase Inhibitor Lovastatin and Nitric Oxide in Cardiomyocyte Cell Death vol.82, pp.1, 2008, https://doi.org/10.1159/000134380
  90. Induction of apoptosis in testis of the marine teleost mummichog Fundulus heteroclitus after in vivo exposure to the antifouling biocide 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (Sea-Nine 211) vol.90, pp.3, 2013, https://doi.org/10.1016/j.chemosphere.2012.08.052
  91. Modulation of the Nitrergic Pathway via Activation of PPAR-γ Contributes to the Neuroprotective Effect of Pioglitazone Against Streptozotocin-Induced Memory Dysfunction vol.56, pp.3, 2015, https://doi.org/10.1007/s12031-015-0508-7
  92. Effect of nitric oxide on the daunorubicin efflux mechanism in K562 cells vol.36, pp.6, 2012, https://doi.org/10.1042/CBI20110193
  93. Neutralization of B. anthracis toxins during ex vivo phagocytosis vol.30, pp.5, 2013, https://doi.org/10.1007/s10719-012-9446-6
  94. Role of iron overload-induced macrophage apoptosis in the pathogenesis of peritoneal endometriosis vol.147, pp.6, 2014, https://doi.org/10.1530/REP-13-0552
  95. Ultrasound-assisted liquid-phase microextraction and high-performance liquid chromatographic determination of nitric oxide produced in PC12 cells using 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacene vol.1103, pp.2, 2006, https://doi.org/10.1016/j.chroma.2005.11.015
  96. Pathophysiological Significance of Hepatic Apoptosis vol.2013, 2013, https://doi.org/10.1155/2013/740149
  97. Tumoricidal activity of endothelium-derived NO and the survival of metastatic cells with high GSH and Bcl-2 levels vol.19, pp.2, 2008, https://doi.org/10.1016/j.niox.2008.04.010
  98. Nitric oxide generation is associated with an unbalance of protein tyrosine phosphatases during liver transplantation vol.61, pp.4, 2007, https://doi.org/10.1016/j.biopha.2007.03.005
  99. Re-thinking the functions of IgA+plasma cells vol.5, pp.5, 2014, https://doi.org/10.4161/19490976.2014.969977
  100. The role of induction and inhibition of nitric oxide synthesis in regulation of blood neutrophils cell death during oxidative imbalance vol.5, pp.2, 2011, https://doi.org/10.1134/S1990750811020156
  101. Glycoconjugates prevent B. anthracis toxin-induced cell death through binding while activating macrophages vol.29, pp.1, 2012, https://doi.org/10.1007/s10719-011-9360-3
  102. Dual Role of Nitric Oxide in Pancreatic β-Cells vol.123, pp.4, 2013, https://doi.org/10.1254/jphs.13R10CP
  103. Nuclear Factor-κB is expressed in early colon cancer and its down-regulation by Curcumin and Diclofenac is associated with the suppression of proliferation and the induction of apoptosis vol.2, pp.4, 2012, https://doi.org/10.1016/j.bionut.2012.07.004
  104. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer vol.35, pp.24, 2016, https://doi.org/10.1038/onc.2015.369
  105. Antioxidant potential, in vitro cytotoxicity and apoptotic effect induced by crude organic extract of Anthracophyllum lateritium against RD sarcoma cells vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0924-9
  106. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide vol.41, pp.1, 2006, https://doi.org/10.1016/j.freeradbiomed.2006.03.021
  107. Lymphocyte-mediated macrophage apoptosis during IL-12 stimulation vol.64, pp.1, 2013, https://doi.org/10.1016/j.cyto.2013.07.027
  108. -Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress vol.8, pp.9-10, 2006, https://doi.org/10.1089/ars.2006.8.1693
  109. Crosstalk Between Calcium and Redox Signaling: From Molecular Mechanisms to Health Implications vol.10, pp.7, 2008, https://doi.org/10.1089/ars.2007.1886
  110. Fucoidan Extracted from the New Zealand Undaria pinnatifida—Physicochemical Comparison against Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Cell Lines vol.16, pp.12, 2018, https://doi.org/10.3390/md16120461