DOI QR코드

DOI QR Code

Interaction Between Acid-Labile Subunit and Insulin-like Growth Factor Binding Protein 3 Expressed in Xenopus Oocytes

  • Choi, Kyung-Yi (Department of Life Science, The University of Seoul) ;
  • Lee, Dong-Hee (Department of Life Science, The University of Seoul)
  • Published : 2002.03.31

Abstract

The acid-bible subunit (ALS) associates with the insulinlike growth factor (IGF)-I or II, and the IGF binding protein-3 (IGFBP-3) in order to form a 150-kD complex in the circulation. This complex may regulate the serum IGFs by restricting them in the vascular system and promoting their endocrine actions. Little is known about how ALS binds to IGFBP3, which connects the IGFs to ALS. Xenopus oocyte was utilized to study the function of ALS in assembling IGFs into the ternary complexes. Xenopus oocyte was shown to correctly translate in vitro transcribed mRNAs of ALS and IGFBP3. IGFBP3 and ALS mRNAs were injected in a mixture, and their products were immunoprecipitated by antisera against ALS and IGFBP3. Contrary to traditional reports that ALS interacts only with IGF-bound IGFBP3, this study shows that ALS is capable of forming a binary complex with IGFBP3 in the absence of IGF When cross-linked by disuccinimidyl suberate, the band that represents the ALS-IGFBP3 complex was evident on the PAGE. IGFBP3 movement was monitored according to the distribution between the hemispheres. Following a localized translation in the vegetal hemisphere, IGFBP3 remained in the vegetal half in the presence of ALS. However, the mutant IGFBP3 freely diffused into the animal half, despite the presence of ALS, which is different from the wild type IGFBP3. This study, therefore, suggests that ALS may play an important role in sequestering IGFBP3 polypeptides via the intermolecular aggregation. Studies using this heterologous model will lead to a better understanding of the IGFBP3 and ALS that assemble into the ternary structure and circulate the IGF system.

Keywords

References

  1. Adashi, E. Y., Resnick, C. E., Hurwitz, A., Ricciarelli, E., Hernandez, E. R., Roberts, C. T. and Leroith, D. (1993) The role of insulin-like growth factors and epidermal growth factor-related peptides in intraovarian in the pig ovary. J. Reprod. Fertil. Suppl. 48, 117-125.
  2. Baxter, R. C. and Dai, J. (1994) Purification and characterization of the acid-labile subunit of rat serum insulin-like growth factor binding protein complex. Endocrinology 134, 848- 852. https://doi.org/10.1210/en.134.2.848
  3. Baxter, R. C., Martin, J. L. and Benian, V. A. (1989) High molecular insulin-like growth factor binding protein complex. J. Biol. Chem. 264, 11843-11848.
  4. Blair, H. T., McCutcheon, S. N., Mackenzie, D. D., Gluckman, P. D., Ormsby, J. E. and Brier, B. H. (1989) Response to divergent selection for plasma concentrations of insulin-like growth factor-1 mice. Genet. Res. 53, 187-191. https://doi.org/10.1017/S0016672300028159
  5. Boisclair, Y.R., Seto, D., Hsieh, S., Hurst, K. R. and Ooi, G. T. (1996) Organization and chromosomal localization of the gene encoding the mouse acid labile subunit of the insulin-like growth factor binding complex. Proc. Natl. Acad. Sci. USA 93, 11028-10033. https://doi.org/10.1073/pnas.93.19.10028
  6. Boisclair, Y. R., Tremblay, M. L. and Ooi, G. T. (1997) Targeted inactivation of the acid-labile subunit gene of the 150 kDa IGF-binding protein complex. Proceedings of the 79th Annual Meeting of the Endocrine Society, Minneapolis, p 345 (Abstr.).
  7. Ceriotti, A. and Colman, A. (1988) Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes. EMBO J. 7, 633-638.
  8. Ceriotti, .A., Fabbrini, M. S., Zoppe, M., Bollini, R. and Vitale, A. (1991) Expression of the wild-type and mutated vacuolar storage protein phaseolin in Xenopus oocytes reveals relationships between assembly and intracellular transport. Eur. J. Biochem 202, 959-968. https://doi.org/10.1111/j.1432-1033.1991.tb16456.x
  9. Cohick, W. S. (1998) Role of the insulin-like growth factors and their binding proteins in lactation. J. Dairy Sci. 81, 1769-1777. https://doi.org/10.3168/jds.S0022-0302(98)75746-7
  10. Colman, A. (1984) Translation of eukaryotic messenger RNA in Xenopus oocytes; in Transcription and Translation, Hames, B. D. arid Higgins, S. J. (eds.), pp. 271-302, IRL Press, Washington, DC.
  11. Cox, N. M. (1997) Control of follicular development and ovulation rate in pigs. J. Reprod. Fert. Suppl. 52, 31-46.
  12. Delhanty, P. and Baxter, R. C. (1996) The cloning and expression of the baboon acid-labile subunit of the insulin-like growth factor bindling protein complex. Biochem. Biophys. Res. Commun.227, 897-902. https://doi.org/10.1006/bbrc.1996.1602
  13. Eisenmann, J. E., Patterson, D. F. and Froesch, E. R. (1984) Body size parallels insulin-like growth factor I levels but not growth hormone secretory capacity. Acta Endocrinol. 106, 448-453.
  14. Etherton, T. D. and Kensinger, R. S. (1984) Endocrine regulation of fetal and postnatal meat animal growth. J. Animal Sci. 59, 511-528. https://doi.org/10.2527/jas1984.592511x
  15. Gluckman, P. D., Douglas, R. G., Ambler, G. R., Breier, B. H., Hodgkinson, S.C., Koea, J. B. and Shaw, J. H. F. (1991) The endocrine control of insulin-like growth factor I. Acta Padiatr. Scand. Suppl. 372, 97-105.
  16. Gourdon, J. B., Lane, C. D. and Woodland, H. R. (1971) Use of frog egg and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177-182. https://doi.org/10.1038/233177a0
  17. Hurtley, S. M. and Helenius, A. (1989) Protein oligomerization in the endoplamic reticulum. Annu. Rev. Cell BioI. 5, 277-307. https://doi.org/10.1146/annurev.cb.05.110189.001425
  18. Jones, J. I. and Clemmons, D. R. (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocrine Rev. 16, 3-34.
  19. Kaelin, W. G., Pallas, D. C., Decaprio, J. A., Kaye, F. J. and Livingston, D. M. (1991) Identification of cellular proteins that can interact specifically with T/E1A-binding region of the retinoblastoma gene product. Cell 64, 521-532. https://doi.org/10.1016/0092-8674(91)90236-R
  20. Kawata, E. E., Galili, G., Smith, L. D. and Larkins, B. A. (1988) Translation in Xenopus oocytes of mRNA transcribed in vitro; in Plant Molecular Biology Manual, Gelvin, S. B. and Schilperoort, R. A. (eds.), pp. 1-22. Kluwer Academic Publishers, Dordrecht, Belgium.
  21. Kim, H. Y. and Hanley, M. R. (2000) Comparison of membrane currents in Xenopus oocytes in response to injection of calcium influx factors (ClF) and depletion of intracellular calcium stress. J. Biochem. Mol. Biol. 33, 202-207.
  22. Klindt, J., Buonomo, F. C. and Yen, J. T. (1992) Administration of porcine somatotropin by sustained-release implant: growth and endocrine responses in genetically lean and obese barrows and gilts. J. Animal Sci. 70, 3721-3733. https://doi.org/10.2527/1992.70123721x
  23. Koh, H. J., Park, H. H. and Lee, C. E. (2000) Regulation of IgE and Type 2 IgE recepter expression by Insulin-like growth factor-1: Role of STAT6 and $NF-{\kappa}B$. J. Biochem. Mol. BioI. 33, 454-462.
  24. Krieg, P. A. and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res, 12, 7057-7070. https://doi.org/10.1093/nar/12.18.7057
  25. Kroonsberg, C., McCutcheon, S. N., Siddiqui, R. A., Mackenzie, D. D., Blair, H. T., Ormsby, J. E., Breier, B. H. and Gluckman, P. D. (1989) Reproductive performance and fetal growth in female mice from lines divergently selected on the basis of plasma IGF-I concentrations. J. Reprod. Fert. 87, 349-353. https://doi.org/10.1530/jrf.0.0870349
  26. Lamberson, W. R., Safranski, T. J., Bates, R. O., Keisler, D. H. and Matteri, R. L. (1995) Relationships of serum insulin-like growth factor I concentrations to growth, composition, and reproductive traits of swine. J. Animal Sci. 73, 3241-3245. https://doi.org/10.2527/1995.73113241x
  27. Lamberson, W. R., Sterle, J. A. and Matteri, R. L. (1996) Relationships of serum insuhn-like growth factor II concentrations to growth, compositional, and reproductive traits of swine. J. Animal Sci. 74, 1753-1756. https://doi.org/10.2527/1996.7481753x
  28. Lee, C. Y. and Rechler, M. M. (1995a) A major portion of the 150-kilodalton insulin-like growth factor binding protein (IGFBP) complex in adult rat serum contains unoccupied proteolytically nicked IGFBP-3 that binds IGF-II preferentially. Endocrinology 136, 668-678. https://doi.org/10.1210/en.136.2.668
  29. Lee, C. Y. and Rechler, M. M. (1995b) Purified rat acid-labile subunit and recombinant human insulin-like growth factor (IGF)-binding protein-3 can form a 150-kilodalton binary complex in vitro in the absence of IGFs. Endocrinology 136, 4982-4989. https://doi.org/10.1210/en.136.11.4982
  30. Lee, C. Y. and Rechler, M. M. (1996) Proteolysis of insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) in 150- kilodalton IGFBP complexes by a cation-dependent protease activity in adult rat serum promotes the release of bound IGF-I. Endocrinology 137, 2051-2058. https://doi.org/10.1210/en.137.5.2051
  31. Lee, D.-H. (1998) Characterization of 27K zein as a transmembrane protein. J. Biochem. Mol. BioI. 31, 196-200.
  32. Kang, S.-H. and Choi, Y.-J. (2001) Characterization of Protein disulfide isomerase during lactoferin polypeptide structural maturation in the endoplasmic reticulum. J. Biochem. Mol. Biol. 34, 102-108.
  33. Leong, S. R., Baxter, R. C., Camerato, T., Dai, J. and Wood, W. I. (1992) Structure and functional expression of the acid-labile subunit of the insulin-like growth factor-binding protein complex. Mol. Endocrinol. 6, 870-876. https://doi.org/10.1210/me.6.6.870
  34. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. and Efstratiadis, A. (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (IGFr). Cell 75, 59-72.
  35. Melton, D. A., Krieg, P. A., Rebaglianti, M. R., Maniatis, T., Zinn, K. and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035-7056. https://doi.org/10.1093/nar/12.18.7035
  36. Owens, P. C., Moyse, K. J., Walton, P. E., Priebe, I., Harrison, D. T., Luxford, B. G. and Campbell, R. G. (1993) Genetic differences in insulin-like growth factors and binding proteins: relationship to growth rate. Proceedings of the 75th Annual Meeting of the Endocrine Society, Las Vegas, p 266 (Abstr.).
  37. Rechler, M. M. and Clemmons, D. R. (1998) Regulatory actions of insulin-like growth factor-binding proteins. Trends Endocrinol. Metab. 9, 176-183. https://doi.org/10.1016/S1043-2760(98)00047-2
  38. Richter, J. D. and Smith, L. D. (1981) Differential capacity for translation and lack of competition between mRNAs that segregate to free and membrane-bound polysomes. Cell 27, 183-191. https://doi.org/10.1016/0092-8674(81)90372-X
  39. Rosenfeld, R. (1991) Insulin-like growth factors: the ovarian connection. Human Reprod. 6, 1213-1219. https://doi.org/10.1093/oxfordjournals.humrep.a137514
  40. Shih, R. J., O'Connor, C. M., Kristen, K. and Smith, L. D. (1979) Kinetic Analysis of amino acid pools and protein analysis in amphibian oocytes and embryos. Dev. BioI. 66, 172-182. https://doi.org/10.1016/0012-1606(78)90282-8
  41. Smith, D. G. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coil as fusion with glutathione S-transferase. Gene 67, 31-40. https://doi.org/10.1016/0378-1119(88)90005-4
  42. Ueki I., Ooi, G. T., Tremblay, M. L., Hurst, K. R. and Boisclair, Y. R. (2000) Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc. Nat. Acad. Sci. USA 97, 6868-6873. https://doi.org/10.1073/pnas.120172697
  43. Wallace, J. C., Galili, G., Kawata, G. G., Lending, C. R., Kriz, A. L., Bracker, C. E. and Larkins, B. A. (1988) Location and interaction of the different types of zeins in protein bodies. Biochem. Physiol. Pflanzen. 183, 107-114. https://doi.org/10.1016/S0015-3796(88)80083-0
  44. Winder, S. J., Thvey, A. and Forsyth, I. A. (1989) Stimulation of DNA synthesis in cultures of ovine mammary epithelial cells by insulin and insulin-like growth factors. J. Endocrinol. 123, 319-326. https://doi.org/10.1677/joe.0.1230319
  45. Zapf, J., Born, W., Chang, J. Y., James, P., Froesch, E. R. and Fisher, J. A. (1988) Isolation and NH2-terminal amino sequences of rat serum carrier proteins for insulin-like growth factor. Biochem. Biophys. Res. Commun. 156, 1187-1194. https://doi.org/10.1016/S0006-291X(88)80758-7

Cited by

  1. Expression of Porcine Acid-labile Subunit (pALS) of the 150-kilodalton Ternary Insulin-like Growth Factor Complex and Initial Characterization of Recombinant pALS Protein vol.38, pp.2, 2005, https://doi.org/10.5483/BMBRep.2005.38.2.225
  2. Multiplex ready flow cytometric immunoassay for total insulin like growth factor 1 in serum of cattle vol.135, pp.5, 2010, https://doi.org/10.1039/b925372f