DOI QR코드

DOI QR Code

Apoptotic Cell Death Following Traumatic Injury to the Central Nervous System

  • Springer, Joe E. (Departments of Anatomy and Neurobiology, and Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center)
  • Published : 2002.01.31

Abstract

Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

Keywords

References

  1. Anderson, D. and Hall, E. (1993) Pathophysiology of spinal cord trauma. Ann. Emer. Med. 22,987-992. https://doi.org/10.1016/S0196-0644(05)82739-8
  2. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A. and Nicotera, P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961-973. https://doi.org/10.1016/0896-6273(95)90186-8
  3. Beattie, M. S., Farooqui, A. A. and Bresnahan, J. C. (2000) Review of current evidence for apoptosis after spinal cord injury. J. Neurotrauma 17, 915-925. https://doi.org/10.1089/neu.2000.17.915
  4. Bemelrnans, A. P., Horellou, P., Pradier, L., Brunet, I., Colin, P. and Mallet, J. (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer. Hum. Gene Ther. 10, 2987-2997. https://doi.org/10.1089/10430349950016393
  5. Bhave, S. V., Ghoda, L. and Hoffman, P. L. (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J. Neurosci. 19, 3277-3286. https://doi.org/10.1523/JNEUROSCI.19-09-03277.1999
  6. Blight, A. R. (1983) Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. Neuroscience 10, 521-543. https://doi.org/10.1016/0306-4522(83)90150-1
  7. Blight, A. R. (1989) Effect of 4-aminopyridine on axonal conduction-block in chronic spinal cord injury. Brain Res. Bull. 22,47-52. https://doi.org/10.1016/0361-9230(89)90126-3
  8. Blight, A. R. and Decrescito, V. (1986) Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons. Neuroscience 19, 321-341. https://doi.org/10.1016/0306-4522(86)90025-4
  9. Boer, G. J., van Esseveldt, K. E., Dijkhuizen, P. A., Hermens, W. T., te Beek, E. T., van Heerikhuize, J. J., Poldervaart, H. A. and Verhaagen, J. (2001) Adenoviral vector-mediated expression of neurotrophin-3 increases neuronal survival in suprachiasmatic nucleus grafts. Exp. Neurol. 169, 364-375. https://doi.org/10.1006/exnr.2001.7683
  10. Bohn, M. C., Connor, B., Kozlowski, D. A. and Mohajeri, M. H. (2000) Gene transfer for neuroprotection in animal models of Parkinson's disease and amyotrophic lateral sclerosis. Novanis Found Symp. 231, 70-89; discussion 89-93. https://doi.org/10.1002/0470870834.ch5
  11. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl- D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162-7166. https://doi.org/10.1073/pnas.92.16.7162
  12. Bossy-Wetzel, E., Newmeyer, D. D. and Green, D. R. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD- specific caspase activation and independently of mitochondrial transmembrane depolarization. Embo J. 17, 37-49. https://doi.org/10.1093/emboj/17.1.37
  13. Cao, G., Pei, W., Lan, J., Stetler, R. A., Luo, Y., Nagayama, T., Graham, S. H., Yin, X. M., Simon, R. P. and Chen, J. (2001) Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J. Neurosci. 21, 4678-4690. https://doi.org/10.1523/JNEUROSCI.21-13-04678.2001
  14. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S. and Reed, J. C. (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318-1321. https://doi.org/10.1126/science.282.5392.1318
  15. Chen, J.. Nagayama, T., Jin, K, Stetler, R. A., Zhu, R. L., Graham, S. H. and Simon, R. P. (1998) Induction of caspase-3- like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18, 4914-4928. https://doi.org/10.1523/JNEUROSCI.18-13-04914.1998
  16. Chen, R. H., Su, Y. H., Chuang, R. L. and Chang, T. Y. (1998) Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17, 1959-1968. https://doi.org/10.1038/sj.onc.1202111
  17. Cheng, Y., Deshmukh, M., D'Costa, A., Demaro, J. A., Gidday, J. M., Shah, A., Sun, Y., Jacquin, M. F., Johnson, E. M. and Holtzman, D. M. (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury [see comments]. J. Clin. Invest. 101, 1992-1999. https://doi.org/10.1172/JCI2169
  18. Choi-Lundberg, D. L., Lin, Q., Chang, Y. N., Chiang, Y. L., Hay, C. M., Mohajeri, H., Davidson, B. L. and Bohn, M. C. (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838-841. https://doi.org/10.1126/science.275.5301.838
  19. Citron, B. A., Arnold, P. M., Sebastian,C., Qin, F., Malladi, S., Ameenuddin, S., Landis, M. E. and Festoff, B. W. (2000) Rapid up-regulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp. Neurol. 166, 213-226. https://doi.org/10.1006/exnr.2000.7523
  20. Clark, R. S., Chen, J., Watkins, S. C., Kochanek, P. M., Chen, M., Stetler, R. A., Loeffert, J. E. and Graham, S. H. (1997) Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J. Neurosci. 17,9172-9182. https://doi.org/10.1523/JNEUROSCI.17-23-09172.1997
  21. Clark, R. S., Kochanek, P. M., Chen, M., Watkins, S. C., Marion, D. W., Chen, J., Hamilton, R. L., Loeffert, J. E. and Graham, S. H. (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813- 821. https://doi.org/10.1096/fasebj.13.8.813
  22. Clark, R. S., Kochanek, P. M., Watkins, S. C., Chen, M., Dixon, C. E., Seidberg, N. A., Melick, J., Loeffert, J. E., Nathaniel, P. D., Jin, K. L. and Graham, S. H. (2000) Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem. 74, 740-753. https://doi.org/10.1046/j.1471-4159.2000.740740.x
  23. Coffer, P. J., Jin, J. and Woodgett, J. R. (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3- kinase activation. Biochem. J. 335, 1-13. https://doi.org/10.1042/bj3350001
  24. Crowder, R. J. and Freeman, R. S. (1998) Phosphatidylinositol 3- kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci. 18, 2933-2943. https://doi.org/10.1523/JNEUROSCI.18-08-02933.1998
  25. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N. and Beattie, M. S. (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73-76. https://doi.org/10.1038/nm0197-73
  26. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241. https://doi.org/10.1016/S0092-8674(00)80405-5
  27. Deveraux, Q. L., Roy, N., Stennicke, H. R., Van Arsdale, T., Zhou, Q., Srinivasula, S. M., Alnemri, E. S., Salvesen, G. S. and Reed, J. C. (1998) lAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMbo J. 17, 2215-2223. https://doi.org/10.1093/emboj/17.8.2215
  28. Downward, J. (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin. Cell BioI. 10, 262-267. https://doi.org/10.1016/S0955-0674(98)80149-X
  29. Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating lAP inhibition. Cell 102, 33- 42. https://doi.org/10.1016/S0092-8674(00)00008-8
  30. Du, Y., Bales, K. R., Dodel, R. C., Hamilton-Byrd, E., Hom, J. W., Czilli, D. L., Simmons, L. K., Ni, B. and Paul, S. M. (1997) Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 94, 11657-11662. https://doi.org/10.1073/pnas.94.21.11657
  31. Duckett, C. S., Li, F., Wang, Y., Tomaselli, K. J., Thompson, C. B. and Armstrong, R. C. (1998) Human lAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol. Cell BioI. 18,608-615. https://doi.org/10.1128/MCB.18.1.608
  32. Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R. and Greenberg, M. E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661-665. https://doi.org/10.1126/science.275.5300.661
  33. Eberhardt, O., Coelln, R. V., Kugler, S., Lindenau, J., Rathke-Hartlieb, S., Gerhardt, E., Haid, S., Isenmann, S., Gravel, C., Srinivasan, A., Bahr, M., Weller, M., Dichgans, J. and Schulz, J. B. (2000) Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-pheny1-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci. 20, 9126-9134.
  34. Ekert, P. G., Silke, J., Hawkins, C. J., Verhagen, A. M. and Vaux, D. L. (2001) DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell BioI. 152, 483- 490. https://doi.org/10.1083/jcb.152.3.483
  35. Ekert, P. G., Silke, J. and Vaux, D. L. (1999) Caspase inhibitors. Cell Death Differ. 6, 1081-1086. https://doi.org/10.1038/sj.cdd.4400594
  36. Eldadah, B. A. and Faden, A. I. (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma 17, 811- 829. https://doi.org/10.1089/neu.2000.17.811
  37. Emery, E., Aldana, P., Bunge, M. B., Puckett, W., Srinivasan, A., Keane, R. W., Bethea, J. and Levi, A. D. (1998) Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911-920. https://doi.org/10.3171/jns.1998.89.6.0911
  38. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43- 50. https://doi.org/10.1038/34112
  39. Endres, M., Namura, S., Shimizu-Sasamata, M., Waeber, C., Zhang, L., Gomez-Isla, T., Hyman, B. T. and Moskowitz, M. A. (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J.Cereb. Blood Flow Metab. 18, 238-247. https://doi.org/10.1097/00004647-199803000-00002
  40. Endres, M., Wang, Z. Q., Namura, S., Waeber, C. and Moskowitz, M. A. ( 1997) Ischemic brain injury is mediated by the activation of poly(ADP- ribose)polymerase. J. Cereb. Blood Flow Metab. 17, 1143-1151. https://doi.org/10.1097/00004647-199711000-00002
  41. Eves, E. M., Xiong, W., Bellacosa, A., Kennedy, S. G., Tsichlis, P. N., Rosner, M. R. and Hay, N. (1998) Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol. Cell BioI. 18, 2143- 2152. https://doi.org/10.1128/MCB.18.4.2143
  42. Fathallah-Shaykh, H. M., Kafrouni, A. I., Zhao, L. J., Diaz-Arrastia, R., Garcia, J. A., Frawley, W. H. and Forman, J. (2000) Demyelination but no cognitive, motor or behavioral deficits after adenovirus-mediated gene transfer into the brain. Gene Ther. 7, 2094-2098. https://doi.org/10.1038/sj.gt.3301346
  43. Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G. and Green, D. R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bel-xL. J. Biol. Chern. 274, 2225-2233. https://doi.org/10.1074/jbc.274.4.2225
  44. Flores, A. I., Mallon, B. S., Matsui, T., Ogawa, W., Rosenzweig, A., Okamoto, T. and Macklin, W. B. (2000) Akt-mediated survival of oligodendrocytes induced by neuregulins. J. Neurosci. 20, 7622-7630. https://doi.org/10.1523/JNEUROSCI.20-20-07622.2000
  45. Franke, T. F, Yang, S. I., Chan, T. O., Datta, K., Kazlauskas, A., Morrison, D. K., Kaplan, D. R. and Tsichlis, P. N. (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727-736. https://doi.org/10.1016/0092-8674(95)90534-0
  46. Franklin, R., Quick, M. and Haase, G. (1999) Adenoviral vectors for in vivo gene delivery to oligodendrocytes: transgene expression and cytopathic consequences. Gene Ther. 6, 1360- 1367. https://doi.org/10.1038/sj.gt.3300971
  47. Gillardon, F., Bottiger, B., Schmitz, B., Zimmermann, M. and Hossmann, K. A. (1997) Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. Brain Res. Mol. Brain Res. 50, 16-22. https://doi.org/10.1016/S0169-328X(97)00162-9
  48. Gillardon, F., Kiprianova, I., Sandkuhler, J., Hossmann, K. A. and Spranger, M. (1999) Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience 93, 1219-1222. https://doi.org/10.1016/S0306-4522(99)00292-4
  49. Gold, M. R., Scheid, M. P., Santos, L., Dang-Lawson, M., Roth, R. A., Matsuuchi, L., Duronio, V. and Krebs, D. L. (1999) The B cell antigen receptor activates the Akt (protein kinase B)/ glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. J. lrnrnunol. 163, 1894-1905.
  50. Goswami, R., Kilkus, J., Dawson, S. A. and Dawson, G. (1999) Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of cerarnide in response to pro-apoptotic stimuli. J. Neurosci. Res. 57, 884- 893. https://doi.org/10.1002/(SICI)1097-4547(19990915)57:6<884::AID-JNR14>3.0.CO;2-A
  51. Gottron, F. J., Ying, H. S. and Choi, D. W. (1997) Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell Neurosci. 9, 159-169. https://doi.org/10.1006/mcne.1997.0618
  52. Graham, S. H., Chen, J. and Clark, R. S. (2000) Bel-2 family gene products in cerebral ischemia and traumatic brain injury. J. Neurotrauma 17, 831-841. https://doi.org/10.1089/neu.2000.17.831
  53. Han, B. H., D'Costa, A., Back, S. A., Parsadanian, M., Patel, S., Shah, A. R., Gidday, J. M., Srinivasan, A., Deshmukh, M. and Holtzman, D. M. (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol. Dis. 7, 38-53. https://doi.org/10.1006/nbdi.1999.0275
  54. Han, B. H. and Holtzman, D. M. (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J. Neurosci. 20, 5775-5781. https://doi.org/10.1523/JNEUROSCI.20-15-05775.2000
  55. Hara, H., Friedlander, R. M., Gagliardini, V., Ayata, C., Fink, K., Huang, Z., Shimizu-Sasamata, M., Yuan, J. and Moskowitz, M. A. (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94, 2007-2012. https://doi.org/10.1073/pnas.94.5.2007
  56. Hay, B. A. (2000) Understanding lAP function and regulation: a view from Drosophila. Cell Death Differ. 7, 1045-1056. https://doi.org/10.1038/sj.cdd.4400765
  57. Hay, B. A., Wassarman, D. A. and Rubin, G. M. (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253-1262. https://doi.org/10.1016/0092-8674(95)90150-7
  58. Hay, B. A., Wolff, T. and Rubin, G. M. (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120,2121-2129.
  59. Hayakawa, J., Ohmichi, M., Kurachi, H., Kanda, Y., Hisamoto, K., Nishio, Y., Adachi, K., Tasaka, K., Kanzaki, T. and Murata, Y. (2000) Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin [In Process Citation]. Cancer Res. 60, 5988- 5994.
  60. Hayashi, T., Sakurai, M., Abe, K., Sadahiro, M., Tabayashi, K. and Itoyama, Y. (1998) Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia. Stroke 29, 1007-1012; discussion 1013. https://doi.org/10.1161/01.STR.29.5.1007
  61. Hisahara, S., Araki, T., Sugiyama, F., Yagami, K., Suzuki, M., Abe, K., Yamamura, K., Miyazaki, J., Momoi, T., Saruta, T., Bernard, C. C., Okano, H. and Miura, M. (2000) Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J. 19, 341-348. https://doi.org/10.1093/emboj/19.3.341
  62. Huber, A. B., Ehrengruber, M. U., Schwab, M. E. and Brosarnle, C. (2000) Adenoviral gene transfer to the injured spinal cord of the adult rat. Eur. J. Neurosci. 12, 3437-3442. https://doi.org/10.1046/j.1460-9568.2000.00255.x
  63. Inohara, N., Koseki, T., Chen, S., Benedict, M. A. and Nunez, G. (1999) Identification of regulatory and catalytic domains in the apoptosis nuclease DFF40/CAD. J. BioI. Chem 274, 270-274. https://doi.org/10.1074/jbc.274.1.270
  64. Jakeman, L., Ma, M. and Stokes, B. (2001). Considering the Use of Transgenic Mice in Spinal Cord Injury Research. New York, Prominent Press.
  65. Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D. and Reed, J. C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 4997-5002. https://doi.org/10.1073/pnas.95.9.4997
  66. Katoh, K., Ikata, T., Katoh, S., Hamada, Y., Nakauchi, K., Sano, T. and Niwa, M. (1996) Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci. Lett. 216, 9-12. https://doi.org/10.1016/0304-3940(96)12999-2
  67. Kaya, S. S., Mahmood, A., Li, Y., Yavuz, E., Goksel, M. and Chopp, M. (1999) Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res. 818, 23-33. https://doi.org/10.1016/S0006-8993(98)01204-9
  68. Kennedy, S. G., Kandel, E. S., Cross, T. K. and Hay, N. (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell. Biol. 19, 5800-5810. https://doi.org/10.1128/MCB.19.8.5800
  69. Kennedy, S. G., Wagner, A. J., Conzen, S. D., Jordan, J., Bellacosa, A., Tsichlis, P. N. and Hay, N. (1997) The PI 3- kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11,701-713. https://doi.org/10.1101/gad.11.6.701
  70. Kermer, P., Klocker, N., Labes, M. and Bahr, M. (2000) Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 in vivo. J. Neurosci. 20, 2-8.
  71. Kiprianova, I., Freiman, T. M., Desiderato, S., Schwab, S., Galmbacher, R., Gillardon, F. and Spranger, M. (1999) Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J. Neurosci. Res. 56, 21-27. https://doi.org/10.1002/(SICI)1097-4547(19990401)56:1<21::AID-JNR3>3.0.CO;2-Q
  72. Kitagawa, H., Sasaki, C., Sakai, K., Mori, A., Mitsumoto, Y., Mori, T., Fukuchi, Y., Setoguchi, Y. and Abe, K. (1999) Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevent, ischemic brain injury after transient middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 19, 1336-1344. https://doi.org/10.1097/00004647-199912000-00007
  73. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
  74. Kluck, R. M., Martin, S. J., Hoffman, B. M., Zhou, J. S., Green, D. R. and Newmeyer, D. D. (1997) Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639-4649. https://doi.org/10.1093/emboj/16.15.4639
  75. Kordower, J. H., Emborg, M. E., Bloch, J., Ma, S. Y., Chu, Y., Leventhal, L., McBride, J., Chen, E. Y., Palfi, S., Roitberg, B. Z., Brown, W. D., Holden, J. E., Pyzalski, R., Taylor, M. D., Carvey, P., Ling, Z., Trono, D., Hantraye, P., Deglon, N. and Aebischer, P. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290, 767-773. https://doi.org/10.1126/science.290.5492.767
  76. Korhonen, L., Belluardo, N. and Lindholm, D. (2001) Regulation of X-chromosome-linked inhibitor of apoptosis protein in kainic acid-induced neuronal death in the rat hippocampus. Mol. Cell Neurosci. 17, 364-372. https://doi.org/10.1006/mcne.2000.0935
  77. Korsmeyer, S. J. (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 59, 1693s-1700s.
  78. Krajewski, S., Krajewska, M., Ellerby, L. M., Welsh, K., Xie, Z., Deveraux, Q. L., Salvesen, G. S., Bredesen, D. E., Rosenthal, R. E., Fiskum, G. and Reed, J. C. (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752-5757. https://doi.org/10.1073/pnas.96.10.5752
  79. Kugler, S., Straten, G., Kreppel, F., lsenmann, S., Liston, P. and Bahr, M. (2000) The X-linked inhibitor of apoptosis (XlAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ. 7, 815-824. https://doi.org/10.1038/sj.cdd.4400712
  80. Leist, M., Volbracht, C., Kuhnle, S., Fava, E., Ferrando-May, E. and Nicotera, P. (1997) Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol. Med. 3, 750-764.
  81. Li, G. L., Brodin, G., Farooque, M., Funa, K., Holtz, A., Wang, W. L. and Olsson, Y. (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J. Neuropathol. Exp. Neurol. 55,280-289. https://doi.org/10.1097/00005072-199603000-00003
  82. Li, H., Colbourne, F., Sun, P., Zhao, Z., Buchan, A. M. and Iadecola, C. (2000) Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke 31, 176-182. https://doi.org/10.1161/01.STR.31.1.176
  83. Li, M., Ona, V. O., Chen, M., Kaul, M., Tenneti, L., Zhang, X., Stieg, P. E., Lipton, S. A. and Friedlander, R. M. (2000) Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 99, 333-342. https://doi.org/10.1016/S0306-4522(00)00173-1
  84. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  85. Linnik, M. D., Zahos, P., Geschwind, M. D. and Federoff, H. J. (1995) Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 26, 1670-1674; discussion 1675. https://doi.org/10.1161/01.STR.26.9.1670
  86. Liu, X., Kim, C. N., Yang, J., Jemrnerson, R. and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  87. Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W. T. and Wang, X. (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95, 8461-8466. https://doi.org/10.1073/pnas.95.15.8461
  88. Liu, X., Zou, H., Slaughter, C. and Wang, X. (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175- 184. https://doi.org/10.1016/S0092-8674(00)80197-X
  89. Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. w., Dong, H. X., Wu, Y. J., Fan, G. S., Jacquin, M. F., Hsu, C. Y. and Choi, D. W. (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 17, 5395-5406. https://doi.org/10.1523/JNEUROSCI.17-14-05395.1997
  90. Lou, J., Lenke, L. G., Ludwig, F. J. and O'Brien, M. F. (1998) Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 36, 683-690. https://doi.org/10.1038/sj.sc.3100632
  91. Lynch, D. R. and Dawson, T. M. (1994) Secondary mechanisms in neuronal trauma. Curr. Opin. Neurol. 7, 510-516. https://doi.org/10.1097/00019052-199412000-00007
  92. Ma, J., Endres, M. and Moskowitz, M. A. (1998) Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br. J. Phannacol. 124, 756-762. https://doi.org/10.1038/sj.bjp.0701871
  93. MacManus, J. P. and Buchan, A. M. (2000) Apoptosis after experimental stroke: fact or fashion? J. Neurotrauma. 17, 899- 914. https://doi.org/10.1089/neu.2000.17.899
  94. Manon, S., Chaudhuri, B. and Guerin, M. (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by co-expression of Bcl-xL. FEBS Lett. 415, 29-32. https://doi.org/10.1016/S0014-5793(97)01087-9
  95. Martinou, J. C., Dubois-Dauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., Albertini, P., Talabot, D., Catsicas, S., Pietra, C. and et al. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017-1030. https://doi.org/10.1016/0896-6273(94)90266-6
  96. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J. and Moskowitz, M. A. (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659-3668.
  97. Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J., Matsuda, H. and Tsujirnoto, Y. (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 14681-14686. https://doi.org/10.1073/pnas.95.25.14681
  98. Newcomb, J. K., Zhao, X., Pike, B. R. and Hayes, R. L. (1999) Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp. Neurol. 158, 76-88. https://doi.org/10.1006/exnr.1999.7071
  99. Ni, B., Wu, X., Su, Y., Stephenson, D., Smalstig, E. B., Clemens, J. and Paul, S. M. (1998) Transient global forebrain ischemia induces a prolonged expression of the caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons. J. Cereb. Blood Flow Metab. 18, 248-256. https://doi.org/10.1097/00004647-199803000-00003
  100. Nicotera, P., Ankarcrona, M., Bonfoco, E., Orrenius, S. and Lipton, S. A. (1997) Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv Neurol. 72, 95-101.
  101. Nunez, G. and del Peso, L. (1998) Linking extracellular survival signals and the apoptotic machinery. Curr. Opin Neurobiol. 8, 613-618. https://doi.org/10.1016/S0959-4388(98)80089-5
  102. Ouyang, Y. B., Tan, Y., Comb, M., Liu, C. L., Martone, M. E., Siesjo, B. K. and Hu, B. R. (1999) Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and Activation of caspase-like proteases. J. Cereb. Blood Flow Metab. 19, 1126-1135. https://doi.org/10.1097/00004647-199910000-00009
  103. Pan, G., Humke, E. W. and Dixit, V. M. (1998) Activation of caspases triggered by cytochrome c in vitro. FEBS Lett 426, 151-154. https://doi.org/10.1016/S0014-5793(98)00330-5
  104. Pike, B. R., Zhao, X., Newcomb, J. K., Posmantur, R. M., Wang, K. K. and Hayes, R. L. (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 9, 2437-2442. https://doi.org/10.1097/00001756-199808030-00002
  105. Pike, B. R., Zhao, X., Newcomb, J. K., Wang, K. K., Posmantur, R. M. and Hayes, R. L. (1998) Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures. J. Neurosci. Res. 52, 505-520. https://doi.org/10.1002/(SICI)1097-4547(19980601)52:5<505::AID-JNR3>3.0.CO;2-G
  106. Posmantur, R. M., Zhao, X., Kampfl, A., Clifton, G. L. and Hayes, R. L. (1998) Immunoblot analyses of the relative contributions of cysteine and aspartic proteases to neurofilament breakdown products following experimental brain injury in rats. Neurochem Res. 23, 1265-1276. https://doi.org/10.1023/A:1020792132629
  107. Pulera, M. R., Adams, L. M., Liu, H., Santos, D. G., Nishimura, R. N., Yang, F., Cole, G. M. and Wasterlain, C. G. (1998) Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia [see comments]. Stroke 29, 2622-2630. https://doi.org/10.1161/01.STR.29.12.2622
  108. Rabizadeh, S., LaCount, D. J., Friesen, P. D. and Bredesen, D. E. (1993) Expression of the baculovirus p35 gene inhibits mammalian neural cell death. J. Neurochem. 61, 2318-2321. https://doi.org/10.1111/j.1471-4159.1993.tb07477.x
  109. Raghupathi, R., Graham, D. J. and McIntosh, T. K. (2000) Apoptosis after traumatic brain injury. J. Neurotrauma. 17, 927-938. https://doi.org/10.1089/neu.2000.17.927
  110. Reed, J. C., Jurgensmeier, J. M. and Matsuyama, S. (1998) Bcl-2 family proteins and mitochondria. Biochim. Biophys. Acta. 1366, 127-137. https://doi.org/10.1016/S0005-2728(98)00108-X
  111. Rink, A., Fung, K. M., Trojanowski, J. Q., Lee, V. M., Neugebauer, E. and McIntosh, T. K. (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathal. 147, 1575-1583.
  112. Romero, M. I., Rangappa, N., Li, L., Lightfoot, E., Garry, M. G. and Smith, G. M. (2000) Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J. Neurosci. 20, 4435-4445. https://doi.org/10.1523/JNEUROSCI.20-12-04435.2000
  113. Romero, M. I. and Smith, G. M. (1998) Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Ther. 5, 1612-1621. https://doi.org/10.1038/sj.gt.3300774
  114. Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99. https://doi.org/10.1038/34214
  115. Sakahira, H., Enari, M. and Nagata, S. (1999) Functional differences of two forms of the inhibitor of caspase- activated DNase, ICAD-L, and ICAD-S. J. BioI. Chem. 274, 15740- 15744. https://doi.org/10.1074/jbc.274.22.15740
  116. Shibata, M., Hisahara, S., Hara, H., Yamawaki, T., Fukuuchi, Y., Yuan, J., Okano, H. and Miura, M. (2000) Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J. Clin. Invest. 106, 643-653. https://doi.org/10.1172/JCI10203
  117. Shuman, S. L., Bresnahan, J. C. and Beattie, M. S. (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J. Neurosci. Res. 50, 798-808. https://doi.org/10.1002/(SICI)1097-4547(19971201)50:5<798::AID-JNR16>3.0.CO;2-Y
  118. Simons, M., Beinroth, S., Gleichmann, M., Liston, P., Komeluk, R. G., MacKenzie, A. E., Bahr, M., K1ockgether, T., Robertson, G. S., Weller, M. and Schulz, J. B. (1999) Adenovirus-mediated gene transfer of inhibitors of apoptosis protein delays apoptosis in cerebellar granule neurons. J. Neurochem. 72, 292- 301. https://doi.org/10.1046/j.1471-4159.1999.0720292.x
  119. Skulachev,, V. P. (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423, 275-280. https://doi.org/10.1016/S0014-5793(98)00061-1
  120. Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A, Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R. and Martin, S. J. (1999) Ordering the Cytochrome c-initiated Caspase Cascade: Hierarchical Activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9- dependent Manner. J. Cell Biol. 144,281-292. https://doi.org/10.1083/jcb.144.2.281
  121. Smith, G. M., Berry, R. L., Yang, J. and Tanelian, D. (1997) Electrophysiological analysis of dorsal root ganglion neurons pre- and post-coexpression of green fluorescent protein and functional 5-HT3 receptor. J. Neurophysiol. 77, 3115-3121. https://doi.org/10.1152/jn.1997.77.6.3115
  122. Smith, G. M., Hale, J., Pasnikowski, E. M., Lindsay, R. M., Wong, V. and Rudge, J. S. (1996) Astrocytes infected with replication-defective adenovirus containing a secreted form of CNTF or NT3 show enhanced support of neuronal populations in vitro. Exp. Neurol. 139, 156-166. https://doi.org/10.1006/exnr.1996.0090
  123. Smith, G. M. and Romero, M. I. (1999) Adenoviral-mediated gene transfer to enhance neuronal surviVal, growth, and regeneration. J. Neurosci. Res. 55, 147-157. https://doi.org/10.1002/(SICI)1097-4547(19990115)55:2<147::AID-JNR2>3.0.CO;2-8
  124. Springer, J., Azbill, R. and Knapp, P. (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nature Medicine. 5, 943-946. https://doi.org/10.1038/11387
  125. Springer, J., Azbill, R., Nottingham, S. and Kennedy, S. (2000) Calcineurin-mediated BAD dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J. Neurosci. 20, 7246-7251. https://doi.org/10.1523/JNEUROSCI.20-19-07246.2000
  126. Tator, C. and Fehlings, M. (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75, 15-26. https://doi.org/10.3171/jns.1991.75.1.0015
  127. Ulrich, E., Duwel, A., Kauffmann-Zeh, A., Gilbert, C., Lyon, D., Rudkin, B., Evan, G. and Martin-Zanca, D. (1998) Specific TrkA survival signals interfere with different apoptotic pathways. Oncogene 16, 825-832. https://doi.org/10.1038/sj.onc.1201842
  128. Vaillant, A. R., Mazzoni, I., Tudan, C., Boudreau, M., Kaplan, D. R. and Miller, F. D. (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell BioI. 146, 955-966. https://doi.org/10.1083/jcb.146.5.955
  129. Velier, J. J., Ellison, J. A., Kikly, K. K., Spera, P. A., Barone, F. C. and Feuerstein, G. Z. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19, 5932-5941.
  130. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing lAP proteins. Cell 102, 43-53. https://doi.org/10.1016/S0092-8674(00)00009-X
  131. Vrrdee, K., Xue, L., Hemmings, B. A., Goemans,C., Heumann, R. and Tolkovsky, A. M. (1999) Nerve growth factor-induced PKB/Akt activity is sustained by phosphoinositide 3-kinase dependent and independent signals in sympathetic neurons [In Process Citation]. Brain Res. 837, 127-142. https://doi.org/10.1016/S0006-8993(99)01643-1
  132. Watabe, K., Ohashi, T., Sakamoto, T., Kawazoe, Y., Takeshima, T., Oyanagi, K., Inoue, K., Eto, Y. and Kim, S. U. (2000) Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J. Neurosci. Res. 60,511-519. https://doi.org/10.1002/(SICI)1097-4547(20000515)60:4<511::AID-JNR10>3.0.CO;2-I
  133. Watabe, K., Sakamoto, T., Ohashi, T., Kawazoe, Y., Oyanagi, K., Takeshima, T., Inoue, K., Eto, Y. and Kim, S. U. (2001) Adenoviral gene transfer of glial cell line-derived neurotrophic factor to injured adult motoneurons. Hum. Cell 14, 7-15.
  134. Xu, D., Bureau, Y., McIntyre, D. C., Nicholson, D. W., Liston, P., Zhu, Y., Fong, W. G., Crocker, S. J., Komeluk, R. G. and Robertson, G. S. (1999) Attenuation of ischemia-induced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J. Neurosci. 19,5026-5033. https://doi.org/10.1523/JNEUROSCI.19-12-05026.1999
  135. Yagi, T., Jikihara, I., Fukumura, M., Watabe, K., Ohashi, T., Eto, Y., Hara, M. and Maeda, M. (2000) Rescue of ischemic brain injury by adenoviral gene transfer of glial cell line-derived neurotrophic factor after transient global ischemia in gerbils. Brain Res. 885, 273-282. https://doi.org/10.1016/S0006-8993(00)02956-5
  136. Yakovlev, A. G., Knoblach, S. M., Fan, L., Fox, G. B., Goodnight, R. and Faden, A. I. (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415-7424. https://doi.org/10.1523/JNEUROSCI.17-19-07415.1997
  137. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P. and Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132. https://doi.org/10.1126/science.275.5303.1129
  138. Yang, J. C. and Cortopassi, G. A. (1998) Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free. Radic. BioI. Med. 24, 624-631. https://doi.org/10.1016/S0891-5849(97)00367-5
  139. Yao, R. and Cooper, G. M. (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003-2006. https://doi.org/10.1126/science.7701324
  140. Yong, C., Arnold, P. M., Zoubine, M. N., Citron, B. A., Watanabe, I., Berman, N. E. and Festoff, B. W. (1998) Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J. Neurotrauma. 15, 459-472. https://doi.org/10.1089/neu.1998.15.459
  141. Young, W. (1993) Secondary injury mechanisms in acute spinal cord injury. J. Emerg. Med. 11(Suppl 1), 13-22.
  142. Yukawa, H., Takahashi, J. C., Miyatake, S. I., Saiki, M., Matsuoka, N., Akimoto, M., Yanamoto, H., Nagata, I., Kikuchi, H. and Hashimoto, N. (2000) Adenoviral gene transfer of basic fibroblast growth factor promotes angiogenesis in rat brain. Gene Ther. 7, 942-949. https://doi.org/10.1038/sj.gt.3301182
  143. Zhang, C., Raghupathi, R., Saatrnan, K., LaPlaca, M. and McIntosh, T. (1999) Regional and Temporal Alterations in DNA Fragmentation Factor (DFF)-Like Proteins Following Experimental Brain Trauma in the Rat. J. Neurochemistry 73, 1650-1659. https://doi.org/10.1046/j.1471-4159.1999.0731650.x
  144. Zhou, X. M., Liu, Y., Payne, G., Lutz, R. J. and Chittenden, T. (2000) Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J. BioI. Chem. 275,25046-25051. https://doi.org/10.1074/jbc.M002526200
  145. Zhu, C., Wang, X., Hagberg, H. and Blomgren, K (2000) Correlation Between Caspase-3 Activation and Three Different Markers of DNA Damage in Neonatal Cerebral Hypoxia-Ischemia. J. Neurochem. 75, 819-829. https://doi.org/10.1046/j.1471-4159.2000.0750819.x
  146. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413. https://doi.org/10.1016/S0092-8674(00)80501-2

Cited by

  1. Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord vol.1278, 2009, https://doi.org/10.1016/j.brainres.2009.04.012
  2. Limaprost reduces motor disturbances by increasing the production of insulin-like growth factor I in rats subjected to spinal cord injury vol.156, pp.5, 2010, https://doi.org/10.1016/j.trsl.2010.08.002
  3. Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system vol.171, pp.2, 2010, https://doi.org/10.1016/j.neuroscience.2010.09.002
  4. Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-015-0373-x
  5. Lipopolysaccharide preconditioning attenuates apoptotic processes and improves neuropathologic changes after spinal cord injury in rats vol.124, pp.8, 2014, https://doi.org/10.3109/00207454.2013.864289
  6. Increased apoptosis in rat brain after rapid eye movement sleep loss vol.142, pp.2, 2006, https://doi.org/10.1016/j.neuroscience.2006.06.026
  7. Spatiotemporal Pattern of RNA-Binding Motif Protein 3 Expression After Spinal Cord Injury in Rats vol.34, pp.4, 2014, https://doi.org/10.1007/s10571-014-0033-1
  8. Apoptotic and behavioral sequelae of mild brain trauma in mice vol.85, pp.4, 2007, https://doi.org/10.1002/jnr.21160
  9. Increase in phosphorylation of PDK1 and cell survival after acute spinal cord injury vol.320, pp.1-2, 2012, https://doi.org/10.1016/j.jns.2012.06.003
  10. Encephalopathy and death in infants with abusive head trauma is due to hypoxic-ischemic injury following local brain trauma to vital brainstem centers vol.129, pp.1, 2015, https://doi.org/10.1007/s00414-014-1060-7
  11. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment vol.16, pp.6, 2015, https://doi.org/10.3390/ijms160611903
  12. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis vol.19, pp.6, 2014, https://doi.org/10.1007/s10495-014-0976-1
  13. A new in vitro injury model of mouse neurons induced by mechanical scratching vol.510, pp.1, 2012, https://doi.org/10.1016/j.neulet.2011.12.061
  14. IKVAV-linked cell membrane-spanning peptide treatment induces neuronal reactivation following spinal cord injury vol.1, pp.4, 2015, https://doi.org/10.4155/fso.15.81
  15. Lanthanum Chloride Impairs Spatial Memory Through ERK/MSK1 Signaling Pathway of Hippocampus in Rats vol.39, pp.12, 2014, https://doi.org/10.1007/s11064-014-1452-6
  16. Immunization with a Neural-Derived Peptide Protects the Spinal Cord from Apoptosis after Traumatic Injury vol.2013, 2013, https://doi.org/10.1155/2013/827517
  17. Ovarian Steroids Decrease DNA Fragmentation in the Serotonin Neurons of Non-Injured Rhesus Macaques vol.15, pp.6, 2010, https://doi.org/10.1038/mp.2009.97
  18. Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: Possible involvement of TRPM2 channels vol.30, pp.1, 2015, https://doi.org/10.1007/s11011-014-9623-3
  19. Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A vol.34, pp.7, 2017, https://doi.org/10.1089/neu.2016.4628
  20. Protective actions of ovarian hormones in the serotonin system of macaques vol.30, pp.2, 2009, https://doi.org/10.1016/j.yfrne.2009.04.003
  21. Proteomic and Phosphoproteomic Analyses of the Soluble Fraction following Acute Spinal Cord Contusion in Rats vol.27, pp.1, 2010, https://doi.org/10.1089/neu.2009.1051
  22. Lanthanum chloride promotes mitochondrial apoptotic pathway in primary cultured rat astrocytes vol.28, pp.9, 2013, https://doi.org/10.1002/tox.20738
  23. Molecular targets for axon regeneration: focus on the intrinsic pathways vol.13, pp.12, 2009, https://doi.org/10.1517/14728220903307517
  24. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology vol.2015, 2015, https://doi.org/10.1155/2015/652030
  25. Neuroprotective actions of ovarian hormones without insult in the raphe region of rhesus macaques vol.154, pp.2, 2008, https://doi.org/10.1016/j.neuroscience.2008.03.056
  26. Effects of dantrolene on apoptosis and immunohistochemical expression of NeuN in the spinal cord after traumatic injury in rats vol.91, pp.6, 2010, https://doi.org/10.1111/j.1365-2613.2010.00738.x
  27. WITHDRAWN: Increase in phosphorylation of PDK1 and cell survival after acute spinal cord injury 2012, https://doi.org/10.1016/j.jns.2012.02.037
  28. Effect of Endogenous Androgens on 17β-Estradiol-Mediated Protection after Spinal Cord Injury in Male Rats vol.27, pp.3, 2010, https://doi.org/10.1089/neu.2009.1069
  29. Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin vol.17, pp.6, 2010, https://doi.org/10.1038/cdd.2009.205
  30. Targeting neurological disease with RNAi vol.3, pp.11, 2007, https://doi.org/10.1039/b701169e
  31. Stereology and Ultrastructure of Chronic Phase Axonal and Cell Soma Pathology in Stretch-Injured Central Nerve Fibers vol.28, pp.3, 2011, https://doi.org/10.1089/neu.2010.1707
  32. Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury vol.96, 2016, https://doi.org/10.1016/j.neuint.2016.02.017
  33. Early necrosis and apoptosis of Schwann cells transplanted into the injured rat spinal cord vol.26, pp.6, 2007, https://doi.org/10.1111/j.1460-9568.2007.05771.x
  34. HDAC6 is a target for protection and regeneration following injury in the nervous system vol.106, pp.46, 2009, https://doi.org/10.1073/pnas.0907935106
  35. Ion Channels in Regulation of Neuronal Regenerative Activities vol.5, pp.1, 2014, https://doi.org/10.1007/s12975-013-0320-z
  36. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus vol.26, pp.1, 2013, https://doi.org/10.1007/s10534-012-9593-z
  37. Experimental Reovirus-Induced Acute Flaccid Paralysis and Spinal Motor Neuron Cell Death vol.67, pp.3, 2008, https://doi.org/10.1097/NEN.0b013e31816564f0
  38. Genetic and pharmacological intervention of the p75NTR pathway alters morphological and behavioural recovery following traumatic brain injury in mice vol.30, pp.1, 2016, https://doi.org/10.3109/02699052.2015.1088963