DOI QR코드

DOI QR Code

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Keum, Young-Sam (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Seo, Hyo-Joung (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Surh, Young-Joon (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Published : 2002.05.31

Abstract

Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.

Keywords

References

  1. Abate, C., Patel, F. J., Rauscher, T. III. and Curran, T. (1990) Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249, 1157-1161. https://doi.org/10.1126/science.2118682
  2. Angel, P. and Karin, M. (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochem. Biophys. Acta 1072, 129-157.
  3. Barnes, P. and Karin, M. (1997) Nuclear factor-$\kappa$B-A Pivotal transcription factor in chronic inflammatory diseases. N. Eng. J. Med. 336, 1066-1071. https://doi.org/10.1056/NEJM199704103361506
  4. Bierhaus, A., Zhang, Y., Quehenberger, P., Luther, T., Hasse, M., Muller, M., Mackman, N., Ziegler, R. and Nawroth, P. P. (1997) The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-$\kappa$B. Thrombosis and Haemostasis 77, 772-782.
  5. Chabot-Fletcher, M. (1996) Transcription factor NF-$\kappa$B: an emerging anti-inflammatory drug target. Pharmacol. Rev. Commun. 8, 317-324.
  6. Dent, C. L. and Latchman, D. S. (1993) Transcription Factors, IRL Press, Oxford.
  7. Dong, Z., Birrer, M. J., Watts, R. G., Matrisian, L. M. and Colburn, N. (1994) Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc. Natl. Acad. Sci. USA 91, 609-613. https://doi.org/10.1073/pnas.91.2.609
  8. Dorai, T., Gehani, N. and Katz, A. (2000) Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol. Urol. 4, 1-6.
  9. Eicher, D. M., Tan, T. H., Rice, N. R., OShea, J. J. and Kennedy, I. C. S. (1994) Expression of v-src in T cells correlates with nuclear expression of NF-$\kappa$B. J. Immunol. 152, 2710-2719.
  10. Han, S. S., Chung, S. T., Robertson, D. A., Ranjan, D. and Bondada, S. (1999) Curcumin causes the growth arrest and the apoptosis of B cell lymphoma by down-regulation of egr-1, c-myc, bcl-xl, NF-$\kappa$B, and p53. Clin. Immunol. 93, 152-161. https://doi.org/10.1006/clim.1999.4769
  11. Han, S. S., Keum, Y. S., Seo, H, J., Chun, K.-S., Lee, S. S. and Surh, Y. J. (2001) Capsaicin suppresses phorbol ester-induced activation of NF-$\kappa$B/Rel and AP-1 transcription factors in mouse epidermis. Cancer Lett. 164, 119-126. https://doi.org/10.1016/S0304-3835(01)00378-0
  12. Huang, M. T., Lou, Y. R., Xie, J. G., Ma, W., Lu, Y. P., Yen, P., Zhu, B. T., Newmark, H. and Ho, C. T. (1998) Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz(a)anthracene-induced mammary tumors and lymphoma/leukemias in Sencar mice. Carcinogenesis 19, 1697- 1700. https://doi.org/10.1093/carcin/19.9.1697
  13. Huang, M. T., Lusz, T., Ferraro, T., Abidi, T. F., Kaskin, J. D. and Conney, A. H. (1991) Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res. 51, 813-819
  14. Huang, M. T., Ma, W., Yen, P., Xie, J. G., Han, J., Frenkel, K., Grunberger, D. and Conney, A. H. (1997) Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbal-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18, 83-88. https://doi.org/10.1093/carcin/18.1.83
  15. Huang, T. S., Lee, S. C. and Lin, J. K. (1991) Suppression of c- Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 88, 5292-5296. https://doi.org/10.1073/pnas.88.12.5292
  16. Jiang, M. C., Yang-Yen, H. F., Lin, J. K. and Yen, J. J. (1996a) Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by divergent stimuli in human hepatoblastoma cells. Oncogene 13, 609-616.
  17. Jiang, M. C., Yang-Yen, H. F., Yen, J. J. and Lin, J. K. (1996b) Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cell line. Nutr. Cancer, 26, 111-120. https://doi.org/10.1080/01635589609514468
  18. Jobin, C., Bradham, C. A., Russo, M. P., Juma, B., Narula, A. S., Brenner, D. A. and Sartor, R. B. (1999) Curcumin blocks cytokine-mediated NF-$\kappa$B activation and proinflammatory gene expression by inhibiting inhibitory factor I-$\kappa$B kinase activity. J. Immunol. 163, 3474-3483.
  19. Johnson, D. R., Douglas, I., Jahnke, A., Ghosh, S. and Pober, J. S. (1996) A sustained reduction in I$\kappa$B-$\beta$ may contribute to persistent NF-$\kappa$B activation in human endothelial cells. J. Biol. Chem. 27, 16317-16322.
  20. Koong, A., Chen, E. Y. and Giaccia, A. J. (1994) Hypoxia causes the activation of nuclear $\kappa$B through the phosphorylation of I$\kappa$B on tyrosine residues. Cancer Res. 54, 1425-1430.
  21. Kuo, M. L., Huang, T. S. and Lin, J. K. (1996) Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochem. Biophys. Acta 1317, 95-100.
  22. Kwon, H., Kim, K. S., Park, S., Lee, D.-K. and Yang, C.-H. (2001) Inhibitory effect of paeoniflorin on Fos-Jun-DNA complex formation and stimulation of apoptosis in HL-60 cells. J. Biochem. Mol. Biol. 34, 28-32.
  23. Li, J.-J., Westergaard, Ghosh, P. and Colburn, N. (1997) Inhibitors of both nuclear factor and activator protein-1 activation block the neoplastic response. Cancer Res. 57, 3569-3576.
  24. Mehta, K., Pantazis, P., McQueen, T. and Aggarwal, B. B. (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470-481. https://doi.org/10.1097/00001813-199706000-00010
  25. Nagabhushan, M. and Bhide, S. V. (1992) Curcumin inhibitor of cancer. J. Am. Coll. Nutr. 11, 192-198
  26. Natarajan, K., Singh, S., Burke, T. R. Jr., Grunberger, D. and Aggarwal, B. B. (1996) Caffeic acid phenyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-$\kappa$B. Proc. Natl. Acad. USA 93, 9090-9095. https://doi.org/10.1073/pnas.93.17.9090
  27. Pan, M.-S., Lin-Shiau, S.-Y. and Lin, J.-K. (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of I$\kappa$B kinase and NF-$\kappa$B activation in macrophages. Biochem. Pharmacol. 60, 1665-1676. https://doi.org/10.1016/S0006-2952(00)00489-5
  28. Pendurthi, U. R., Williams, T. and Rao, L. V. M. (1997) Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Arterioscler Thromb. Vasc. Biol. 17, 3406-3413. https://doi.org/10.1161/01.ATV.17.12.3406
  29. Plummer, S. M., Hollway, K. A., Manson, M. M., Munks, R. J.L., Kaptein, A., Farrow, S. and Howells, L. (1999) Inhibition of cyclooxygenase-2 expression in colon cancer cells by the chemopreventive agent curcumin involves inhibition of NF-$\kappa$B activation via the NIK/IKK signaling complex. Oncogene 18, 6013-6020. https://doi.org/10.1038/sj.onc.1202980
  30. Rao, C. V., Rivenson, A., Simi, B. and Reddy, B. S. (1995) Enhancement of experimental colon carcinogenesis by dietary 6-phenylhexyl isothiocyanate. Cancer Res. 55, 259-266.
  31. Remacle, J., Raes, M., Toussaint, O., Renard, P. and Rao, G. (1995) Low levels of reactive oxygen species as modulators of cell function. Mutat. Res. 316, 103-122. https://doi.org/10.1016/0921-8734(95)90004-7
  32. Ruby, A. J., Kuttan, G., Dinesh, B. K., Rajasekharan, K. N. and Kuttan, R. (1995) Anti-tumor and anti-oxidant activity of natural curcuminoids. Cancer Lett. 94, 79-83 https://doi.org/10.1016/0304-3835(95)03827-J
  33. Samaha, H. S., Kelloff, G. J., Steele, V., Rao, C. V. and Reddy, B. S. (1997) Modulation of apoptosis by sullindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylethly isothiocyanate: Apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res. 57, 1301-1305.
  34. Sen, C. K. and Packer, L. (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709-720
  35. Shih, C. A. and Lin, J. K. (1993) Inhibition of 8-hydroxyguanosine formation by curcumin in mouse fibroblast cells. Carcinogenesis 14, 709-712. https://doi.org/10.1093/carcin/14.4.709
  36. Shim, J. S., Lee, H. J., Park, S. S., Cha, B. G. and Chang, H. R. (2001) Curcumin-induced apoptosis of A-431 cells involves caspase-3 activation. J. Biochem. Mol. Biol. 34, 189-193.
  37. Shishodia, S. and Aggarwal, B. B. (2002) Nuclear factor-$\kappa$B activation: a question of life or death. J. Biochem. Mol. Biol. 35, 28-40. https://doi.org/10.5483/BMBRep.2002.35.1.028
  38. Singh, S. and Aggarwal, B. B. (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem. 270, 24995-25000. https://doi.org/10.1074/jbc.270.42.24995
  39. Sikora, E. H., Bielak-Zmijewska, A., Piwocka, K., Skierski, J. and Radzisszewska, E. (1997) Inhibition of proliferation and apoptosis of human and rat T-lymphocytes by curcumin, a curry pigment. Biochem. Pharmacol. 54, 899-907. https://doi.org/10.1016/S0006-2952(97)00251-7
  40. Surh, Y.-J. (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res. 428, 305-327. https://doi.org/10.1016/S1383-5742(99)00057-5
  41. Surh, Y.-J., Chun, K.-S., Cha, H.-H., Han, S.S., Keum, Y.-S., Park, K.-K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-$\kappa$B activation. Mutat. Res. 480/481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  42. Surh, Y.-J., Han, S. S., Keum, Y.-S., Seo, H. and Lee, S. S. (2000) Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-$\kappa$B and AP-1. Biofactors 12, 107-112. https://doi.org/10.1002/biof.5520120117
  43. Thanos, D. and Maniatis, T. (1995) NF-$\kappa$B: a lesson in family values. Cell 80, 529-532. https://doi.org/10.1016/0092-8674(95)90506-5
  44. Verma, S. P., Salomone, E. and Goldin, B. (1997) Curcumin, genistein, plant natural products show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem. Biophys. Res. Commun. 233, 692-696. https://doi.org/10.1006/bbrc.1997.6527
  45. Watabe, M., Ito, K., Masuda, Y., Nakajo, S. and Nakaya, K. (1998) Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells. Oncogene 16, 779-787. https://doi.org/10.1038/sj.onc.1201592

Cited by

  1. Curcumin Prevents the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis vol.52, pp.11, 2007, https://doi.org/10.1007/s10620-006-9138-9
  2. Cytoprotective mechanism of action of curcumin against cataract vol.68, pp.3, 2016, https://doi.org/10.1016/j.pharep.2015.12.012
  3. Inflammatory Process and Molecular Targets for Antiinflammatory Nutraceuticals vol.3, pp.4, 2004, https://doi.org/10.1111/j.1541-4337.2004.tb00063.x
  4. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis vol.130, pp.3, 2011, https://doi.org/10.1016/j.pharmthera.2011.02.004
  5. IGF-I plus E2 induces proliferation via activation of ROS-dependent ERKs and JNKs in human breast carcinoma cells vol.212, pp.3, 2007, https://doi.org/10.1002/jcp.21061
  6. Gene Expression Profiling Related to Anti-inflammatory Properties of Curcumin in K562 Leukemia Cells vol.1171, pp.1, 2009, https://doi.org/10.1111/j.1749-6632.2009.04890.x
  7. Cancer Chemoprevention by Polyphenols and Their Potential Application as Nanomedicine vol.31, pp.1, 2013, https://doi.org/10.1080/10590501.2013.763577
  8. Cancer and diet: How are they related? vol.45, pp.8, 2011, https://doi.org/10.3109/10715762.2011.582869
  9. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis vol.129, pp.1, 2011, https://doi.org/10.1002/ijc.25656
  10. Curcumin Suppresses Lipopolysaccharide-Induced Cyclooxygenase-2 Expression by Inhibiting Activator Protein 1 and Nuclear Factor κB Bindings in BV2 Microglial Cells vol.94, pp.3, 2004, https://doi.org/10.1254/jphs.94.325
  11. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? 2017, https://doi.org/10.1002/jcp.25778
  12. Suppression of Tumor Necrosis Factor-α-Induced Nuclear Factor κB Activation and Aromatase Activity by Capsaicin and Its Analog Capsazepine vol.14, pp.11, 2011, https://doi.org/10.1089/jmf.2010.0236
  13. Back to basics: how natural products can provide the basis for new therapeutics vol.16, pp.11, 2007, https://doi.org/10.1517/13543784.16.11.1753
  14. Expression analysis of maspin in invasive ductal carcinoma of breast and modulation of its expression by curcumin in breast cancer cell lines vol.183, pp.3, 2010, https://doi.org/10.1016/j.cbi.2009.11.019
  15. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line vol.227, pp.1, 2008, https://doi.org/10.1016/j.taap.2007.10.002
  16. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited vol.128, pp.2, 2010, https://doi.org/10.1016/j.pharmthera.2010.08.003
  17. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2–ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells vol.255, pp.3, 2011, https://doi.org/10.1016/j.taap.2011.07.012
  18. Suppression of phorbol ester-induced nf-κB activation by capsaicin in cultured human promyelocytic leukemia cells vol.25, pp.4, 2002, https://doi.org/10.1007/BF02976605
  19. Effects of curcumin on the parasite Schistosoma mansoni: A transcriptomic approach vol.187, pp.2, 2013, https://doi.org/10.1016/j.molbiopara.2012.11.006
  20. Curcumin exposure induces expression of the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells vol.468, pp.2, 2010, https://doi.org/10.1016/j.neulet.2009.10.081
  21. Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals vol.57, pp.7, 2017, https://doi.org/10.1080/10408398.2014.964799
  22. Novel Form of Curcumin Improves Endothelial Function in Young, Healthy Individuals: A Double-Blind Placebo Controlled Study vol.2016, 2016, https://doi.org/10.1155/2016/1089653
  23. The epigenome as a therapeutic target in prostate cancer vol.7, pp.12, 2010, https://doi.org/10.1038/nrurol.2010.185
  24. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma vol.85, pp.3, 2007, https://doi.org/10.1007/s11060-007-9421-4
  25. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives vol.148, 2016, https://doi.org/10.1016/j.lfs.2016.02.022
  26. Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol vol.224, pp.4, 2012, https://doi.org/10.1007/s00213-012-2779-9
  27. In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives vol.2012, 2012, https://doi.org/10.1155/2012/316972
  28. Curcumin hormesis mediates a cross-talk between autophagy and cell death vol.6, pp.12, 2015, https://doi.org/10.1038/cddis.2015.343
  29. Chemopreventive and therapeutic effects of curcumin vol.223, pp.2, 2005, https://doi.org/10.1016/j.canlet.2004.09.041
  30. “Spicing Up” of the Immune System by Curcumin vol.27, pp.1, 2007, https://doi.org/10.1007/s10875-006-9066-7
  31. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms vol.104, pp.5, 2009, https://doi.org/10.1007/s00436-008-1311-y
  32. Curcumin decreases toll-like receptor-2 gene expression and function in human monocytes and neutrophils vol.398, pp.4, 2010, https://doi.org/10.1016/j.bbrc.2010.06.126
  33. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1) vol.57, pp.16, 2014, https://doi.org/10.1021/jm5004733
  34. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis vol.45, pp.5, 2006, https://doi.org/10.1002/mc.20170
  35. Curcumin down regulates smokeless tobacco-induced NF-κB activation and COX-2 expression in human oral premalignant and cancer cells vol.228, pp.1, 2006, https://doi.org/10.1016/j.tox.2006.07.027
  36. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-κB and AP-1 as prime targets vol.72, pp.11, 2006, https://doi.org/10.1016/j.bcp.2006.08.005
  37. Curcumin as an anti-human papillomavirus and anti-cancer compound vol.11, pp.18, 2015, https://doi.org/10.2217/fon.15.166
  38. Curcumin downregulates p38 MAPK-dependent X-ray repair cross-complement group 1 (XRCC1) expression to enhance cisplatin-induced cytotoxicity in human lung cancer cells vol.389, pp.6, 2016, https://doi.org/10.1007/s00210-016-1235-5
  39. Production of Nuclease Activity in U937 Cells by Phorbol 12-Myristate 13-Acetate and Lipopolysaccharide vol.36, pp.5, 2003, https://doi.org/10.5483/BMBRep.2003.36.5.520
  40. Modulation of signal transduction by tea catechins and related phytochemicals vol.591, pp.1-2, 2005, https://doi.org/10.1016/j.mrfmmm.2005.04.010
  41. Curcumin-loaded into PLGA nanoparticles vol.110, pp.2, 2012, https://doi.org/10.1007/s00436-011-2527-9
  42. Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro vol.37, pp.2, 2013, https://doi.org/10.1016/j.leukres.2012.11.009
  43. Cancer Cell Signaling Pathways Targeted by Spice-Derived Nutraceuticals vol.64, pp.2, 2012, https://doi.org/10.1080/01635581.2012.630551
  44. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery vol.4, pp.21, 2014, https://doi.org/10.1039/c3ra46396f
  45. Inflammatory signaling in skeletal muscle insulin resistance: green signal for nutritional intervention? vol.13, pp.6, 2010, https://doi.org/10.1097/MCO.0b013e32833f1acd
  46. Mycobacterium indicus praniiandMycobacterium bovisBCG lead to differential macrophage activation in Toll-like receptor-dependent manner vol.143, pp.2, 2014, https://doi.org/10.1111/imm.12306
  47. Immunomodulatory effects of curcumin in allergy vol.52, pp.9, 2008, https://doi.org/10.1002/mnfr.200700293
  48. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art vol.24, pp.4, 2016, https://doi.org/10.3109/1061186X.2015.1055570
  49. The Effect of Willow Leaf Extracts on Human Leukemic Cells in Vitro vol.36, pp.4, 2003, https://doi.org/10.5483/BMBRep.2003.36.4.387
  50. Polyacrylic acid-coated and non-coated iron oxide nanoparticles induce cytokine activation in human blood cells through TAK1, p38 MAPK and JNK pro-inflammatory pathways vol.89, pp.10, 2015, https://doi.org/10.1007/s00204-014-1325-4
  51. This article has been retracted: Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines vol.102, pp.2, 2011, https://doi.org/10.1111/j.1349-7006.2010.01830.x
  52. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia vol.28, pp.10, 2007, https://doi.org/10.1111/j.1745-7254.2007.00651.x
  53. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-κB activation and tumor promotion vol.523-524, 2003, https://doi.org/10.1016/S0027-5107(02)00323-8
  54. Curcumin blocks multiple sites of the TGF-β signaling cascade in renal cells vol.66, pp.1, 2004, https://doi.org/10.1111/j.1523-1755.2004.00713.x
  55. Bioavailability issues in studying the health effects of plant polyphenolic compounds 2008, https://doi.org/10.1002/mnfr.200700234
  56. Apoptosis Induction by Curcumin in Human Myelogenous Leukemia Cell Lines vol.40, pp.2, 2005, https://doi.org/10.5045/kjh.2005.40.2.75
  57. Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols vol.1822, pp.5, 2012, https://doi.org/10.1016/j.bbadis.2011.10.005
  58. Induction of heat shock response by curcumin in human leukemia cells vol.279, pp.2, 2009, https://doi.org/10.1016/j.canlet.2009.01.031
  59. This article has been retracted: Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines vol.102, pp.2, 2011, https://doi.org/10.1111/j.1349-7006.2010.01831.x
  60. THIS ARTICLE HAS BEEN RETRACTED Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines vol.97, pp.4, 2006, https://doi.org/10.1111/j.1349-7006.2006.00175.x
  61. The potentiation of curcumin on insulin-like growth factor-1 action in MCF-7 human breast carcinoma cells vol.80, pp.23, 2007, https://doi.org/10.1016/j.lfs.2007.04.008
  62. Natural polyphenols in cancer therapy vol.48, pp.5-6, 2011, https://doi.org/10.3109/10408363.2011.631268
  63. The inhibitory mechanism by curcumin on the Zac1-enhanced cyclin D1 expression in human keratinocytes vol.79, pp.3, 2015, https://doi.org/10.1016/j.jdermsci.2015.06.006
  64. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial vol.58, pp.4, 2008, https://doi.org/10.1016/j.jaad.2007.12.035
  65. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases vol.22, pp.1, 2016, https://doi.org/10.3390/molecules22010058
  66. Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues vol.38, pp.4, 2005, https://doi.org/10.5483/BMBRep.2005.38.4.474
  67. Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition vol.66, pp.8, 2003, https://doi.org/10.1016/S0006-2952(03)00501-X
  68. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade vol.33, pp.1, 2014, https://doi.org/10.1007/s10555-013-9457-1
  69. Tumor necrosis factor-α down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway vol.41, pp.5, 2006, https://doi.org/10.1016/j.freeradbiomed.2006.05.014
  70. The effects of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone on proinflammatory signaling pathways and CLP-induced lethal sepsis in mice vol.652, pp.1-3, 2011, https://doi.org/10.1016/j.ejphar.2010.10.092
  71. Curcumin-Loaded Biodegradable Electrospun Fibers: Preparation, Characterization, and Differences in Fiber Morphology vol.18, pp.7, 2013, https://doi.org/10.1080/1023666X.2013.816207
  72. Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells vol.337, pp.2, 2005, https://doi.org/10.1016/j.bbrc.2005.09.079
  73. Molecular basis of chemoprevention with dietary phytochemicals: redox-regulated transcription factors as relevant targets vol.8, pp.2, 2009, https://doi.org/10.1007/s11101-009-9132-x
  74. Constitutive autotaxin transcription by Nmyc-amplified and non-amplified neuroblastoma cells is regulated by a novel AP-1 and SP-mediated mechanism and abrogated by curcumin vol.586, pp.20, 2012, https://doi.org/10.1016/j.febslet.2012.08.026
  75. Protein tyrosine phosphatase controls breast cancer invasion through the expression of matrix metalloproteinase-9 vol.46, pp.11, 2013, https://doi.org/10.5483/BMBRep.2013.46.11.053
  76. Apoptotic Effect of Co-treatment with Curcumin and Cisplatin on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line vol.39, pp.3, 2014, https://doi.org/10.11620/IJOB.2014.39.3.159
  77. In silico inhibition studies of NF-κB p50 subunit by curcumin and its natural derivatives vol.21, pp.10, 2012, https://doi.org/10.1007/s00044-011-9873-0
  78. Immediate early response genes and cell transformation vol.137, pp.1, 2013, https://doi.org/10.1016/j.pharmthera.2012.09.001
  79. Curcumin: A Potential Candidate in Prevention of Cancer via Modulation of Molecular Pathways vol.2014, 2014, https://doi.org/10.1155/2014/761608
  80. BDMC-A, an analog of curcumin, inhibits markers of invasion, angiogenesis, and metastasis in breast cancer cells via NF-κB pathway—A comparative study with curcumin vol.74, 2015, https://doi.org/10.1016/j.biopha.2015.07.024
  81. Phytoconstituents as apoptosis inducing agents: strategy to combat cancer vol.68, pp.4, 2016, https://doi.org/10.1007/s10616-015-9897-2
  82. Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes vol.28, pp.4, 2017, https://doi.org/10.1080/09540105.2016.1259293
  83. Molecular targets of dietary agents for prevention and therapy of cancer vol.71, pp.10, 2006, https://doi.org/10.1016/j.bcp.2006.02.009
  84. Role of curcumin in health and disease vol.114, pp.2, 2008, https://doi.org/10.1080/13813450802033958
  85. Regulation of Nrf2, NF-κB, and AP-1 Signaling Pathways by Chemopreventive Agents vol.7, pp.11-12, 2005, https://doi.org/10.1089/ars.2005.7.1648
  86. Investigation of the Apoptotic Effect of Curcumin in Human Leukemia HL-60 Cells by Using Flow Cytometry vol.25, pp.6, 2010, https://doi.org/10.1089/cbr.2010.0822
  87. Protection Before Impact: the Potential Neuroprotective Role of Nutritional Supplementation in Sports-Related Head Trauma vol.48, pp.S1, 2018, https://doi.org/10.1007/s40279-017-0847-3
  88. Effect of Curcumin-Nanoemulsion Associated with Photodynamic Therapy in Cervical Carcinoma Cell Lines vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/4057959
  89. Impact of curcumin on sirtuins: A review vol.119, pp.12, 2018, https://doi.org/10.1002/jcb.27371
  90. Targeting DNA Methyltranferases in Urological Tumors vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00366