DOI QR코드

DOI QR Code

The Anti-proliferative Gene TIS21 Is Involved in Osteoclast Differentiation

  • Lee, Soo-Woong (National Research Laboratory for Bone Metabolism, Research Center for Proteineous Materials, and School of Dentistry) ;
  • Kwak, Han-Bok (National Research Laboratory for Bone Metabolism, Research Center for Proteineous Materials, and School of Dentistry) ;
  • Lee, Hong-Chan (National Research Laboratory for Bone Metabolism, Research Center for Proteineous Materials, and School of Dentistry) ;
  • Lee, Seung-Ku (National Research Laboratory for Bone Metabolism, Research Center for Proteineous Materials, and School of Dentistry) ;
  • Kim, Hong-Hee (National Research Laboratory for Bone Metabolism, Research Center for Proteineous Materials, and School of Dentistry) ;
  • Lee, Zang-Hee (National Research Laboratory for Bone Metabolism, Research Center for Proteineous Materials, and School of Dentistry)
  • Published : 2002.11.30

Abstract

The remodeling process of bone is accompanied by complex changes in the expression levels of various genes. Several approaches have been employed to detect differentially-expressed genes in regard to osteoclast differentiation. In order to identify the genes that are involved in osteoclast differentiation, we used a cDNA-array-nylon membrane. Among 1,200 genes that showed ameasurable signal, 19 genes were chosen for further study. Eleven genes were up-regulated; eight genes were down-regulated. TIS21 was one of the up-regulated genes which were highly expressed in mature osteoclasts. To verify the cDNA microarray results, we carried out RT-PCR and real-time RT-PCR for the TIS21 gene. The TIS21 mRNA level was higher in differentiated-osteoclasts when compared to undifferentiated bone-marrow macrophages. Furthermore, the treatment with $1\;{\mu}M$ of a TIS21 antisense oligonucleotide reduced the formation of osteoclasts from the bone-marrow-precursor cells by ~30%. These results provide evidence for the potential role of TIS21 in the differentiation of osteoclasts.

Keywords

References

  1. Anderson, D. M., Maraskovsky, E., BilIingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D. and Galibert, L. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179. https://doi.org/10.1038/36593
  2. Cappellen, D., Luong-Nguyen, N. H., Bongiovanni, S., Grenet, O., Wanke, C. and Susa, M. (2002) Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B. J. BioI. Chem. 277, 21971-21982. https://doi.org/10.1074/jbc.M200434200
  3. Doi, M., Nagano, A. and Nakamura, Y. (2002) Genome-wide screening by cDNA microarray of genes associated with matrix mineralization by human mesenchymal stem cells in vitro. Biochem. Biophys. Res. Commun. 290, 381-390. https://doi.org/10.1006/bbrc.2001.6196
  4. Felix, R., Cecchini, M. G., Hofstetter, W., Elford, P. R., Stutzer, A. and Fleisch, H. (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J. Bone Miner. Res. 5, 781-789. https://doi.org/10.1002/jbmr.5650050716
  5. Fletcher,B. S., Lim, R.W.,Vamum, B. C., Kujubu, D. A., Koski, R. A. and Herschman, H. R. (1991) Structure and expression of TlS21, a primary response gene induced by growth factors and tumor promoters. J. Biol. Chem. 266, 14511-14518.
  6. Fuller, K., Owens, J. M., Jagger, C. J., Wilson, A., Moss, R. and Chambers, T. J. (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J. Exp. Med. 178, 1733-1744. https://doi.org/10.1084/jem.178.5.1733
  7. Gori, F., Divieti, P. and Demay, M. B. (2001) Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation. J. BioI. Chem. 276, 46515-46522. https://doi.org/10.1074/jbc.M105757200
  8. Ishikawa, T., Kamiyama, M., Tani-Ishii, N., Suzuki, H., Ichikawa, Y., Hamaguchi, Y., Momiyama, N. and Shimada, H. (2001) Inhibition of osteoclast differentiation and bone resorption by cathepsin K antisense oligonucleotides. Mol. Carcinog. 32. 84-91. https://doi.org/10.1002/mc.1067
  9. Jimi, E., Nakamura, l., Duong, L. T., Ikebe, T., Takahashi, N., Rodan, G. A. and Suda, T. (1999) Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp. Cell Res. 247, 84-93. https://doi.org/10.1006/excr.1998.4320
  10. Jimi, E., Shuto, T. and Koga, T. (1995) Macrophage colony-stimulating factor and interleukin-1 alpha maintain the survival of osteoclast-like cells. Endocrinology 136, 808-811. https://doi.org/10.1210/en.136.2.808
  11. Kim, H. H., Kim, H. M., Kwack, K., Kim, S. W. and Lee, Z. H. (2001) Osteoclast Differentiation Factor Engages the PI 3- kinase, p38, and ERK pathways for Avian Osteoclast Differentiatioo. J. Biochem. Mol. BioI. 34, 421-427.
  12. Kobayashi, K., Takahashi, N., Jimi, E., Udagawa, N., Takami, M., Kotake, S., Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Morinaga, T., Higashio, K., Martin, T. J. and Suda, T. (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191. 275-286. https://doi.org/10.1084/jem.191.2.275
  13. Lee, S. E., Chung, W. J., Kwak, H. B., Chung, C. H., Kwack, K. B., Lee, Z. H. and Kim, H. H. (2001) Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J. Biol. Chem. 276, 49343-49349. https://doi.org/10.1074/jbc.M103642200
  14. Lee, S. W., Han, S. I., Kim, H. H. and Lee, Z. H. (2002) TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-$\kappa$B. J. Biochem. Mol. BioI. 35, 371-376. https://doi.org/10.5483/BMBRep.2002.35.4.371
  15. Lee, Z. H., Lee, S. E., Kim, C. W., Lee, S. H., Kim, S. W., Kwack, K., Walsh, K. and Kim, H. H. (2002) IL-1alpha stimulation of osteoclast survival through the PI 3-kinase/Akt and ERK pathways. J. Biocilem. (Tokyo) 131. 161-166. https://doi.org/10.1093/oxfordjournals.jbchem.a003071
  16. Meiyanto, E., Hoshijima, M., Ogawa, T., Ishida, N. and Takeya, T. (2001) Osteoclast differentiation factor modulates cell cycle machinery and causes a delaY in s phase progression in RAW264 cells. Biochem. Biophys. Res. Commun. 282, 278- 283. https://doi.org/10.1006/bbrc.2001.4564
  17. Miyazaki, T., Katagiri, H., Kanegae, Y., Takayanagi, H., Sawada, Y., Yamamoto, A., Pando, M. P., Asano, T., Verma, I. M., Oda, H., Nakamurra, K. and Tanaka, S. (2000) Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J. Cell Biol. 148. 333-342. https://doi.org/10.1083/jcb.148.2.333
  18. Petersen, D. N., Tkalcevic, G. T., Mansolf, A. L., Rivera-Gonzalez, R. and Brown, T. A. (2000) Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J. BioI. Chem. 275, 36172-36180. https://doi.org/10.1074/jbc.M003622200
  19. Raouf, A. and Seth, A. (2002) Discovery of osteoblast-associated genes using cDNA microarrays. Bone 30, 463-471. https://doi.org/10.1016/S8756-3282(01)00699-8
  20. Roodman, G. D. (1999) Cell biology of the osteoclast. Exp. Hematol. 27, 1229-1241. https://doi.org/10.1016/S0301-472X(99)00061-2
  21. Seth, A., Lee, B. K., Qi, S. and Vary, C. P. (2000) Coordinate expression of novel genes during osteoblast differentiation. J. Bone Miner. Res. 15. 1683-1696. https://doi.org/10.1359/jbmr.2000.15.9.1683
  22. Shi, S., Robey, P. G. and Gronthos, S. (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarmy analysis. Bone 29, 532-539. https://doi.org/10.1016/S8756-3282(01)00612-3
  23. Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, L., Hughes, T. M., Hill, D.. Pattison, W., Campbell, P. S., Sander, G., Van, J., Thrpley, P., Derby, R. Lee. and W, J. Boyle. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309- 319. https://doi.org/10.1016/S0092-8674(00)80209-3
  24. Suda, T., Takahashi, N. and Martin, T. J. (1992) Modulation of osteoclast differentiation. Endocrine Rev. 13, 66-80.
  25. Suhr, S. M., Parnula, S., Baylink, D. J. and Lau, K. H. (2001) Antisense oligodeoxynucleotide evidence that a unique osteoclastic protein-tyrosine phosphatase is essential for osteoclastic resorption. J. Bone Miner. Res. 16, 1795-1803 https://doi.org/10.1359/jbmr.2001.16.10.1795
  26. Tanaka, S., Takahashi, N., Udagawa, N., Tamura, T., Akatsu, T., Stanley, E. R., Kurokawa, T. and Suda, T. (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J. Clin. Invest. 91, 257-263. https://doi.org/10.1172/JCI116179
  27. Tirone, F. (2001) The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J. Cell. Physiol. 187, 155-165. https://doi.org/10.1002/jcp.1062
  28. Udagawa, N., Takahashi, N., Akatsu, T., Tanaka, H., Sasaki, T., Nishihara, T., Koga, T., Martin, T. J. and Suda, T. (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87, 7260-7264. https://doi.org/10.1073/pnas.87.18.7260
  29. Wong, B. R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachikov, S., Cayani, E., Bartlett, F. S. $3^{rd}$., Frankel, W. N., Lee, S. Y. and Choi, Y. (1997) TRANCE is a novel ligand of the turnor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. BioI, Chem. 72, 25190-25194.
  30. Yang, S., Madyastha, P., Ries, W. and Key, L. L. (2002) Characterization of interferon gamma receptors on osteoclasts: effect of interferon gamma on osteoclastic superoxide generation. J. Cell Biochem. 84, 645-654. https://doi.org/10.1002/jcb.10074
  31. Zhang, Y. H., Heulsmann, A., Tondravi, M. M., Mukherjee, A. and Abu-Amer, Y. (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276. 563-568, https://doi.org/10.1074/jbc.M008198200

Cited by

  1. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes vol.35, pp.10, 2005, https://doi.org/10.1002/eji.200526345
  2. Determining a Detectable Threshold of Signal Intensity in cDNA Microarray Based on Accumulated Distribution vol.36, pp.6, 2003, https://doi.org/10.5483/BMBRep.2003.36.6.558
  3. Retinoblastoma protein-interacting zinc finger 1 (RIZ1) participates in RANKL-induced osteoclast formation via regulation of NFATc1 expression vol.131, pp.2, 2010, https://doi.org/10.1016/j.imlet.2010.04.006