DOI QR코드

DOI QR Code

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong (Research Center for Proteineous Materials, School of Dentistry, Chosun University) ;
  • Han, Sang-In (Department of Microbiology and Immunology, School of Dentistry, Chosun University) ;
  • Kim, Hong-Hee (Research Center for Proteineous Materials, School of Dentistry, Chosun University) ;
  • Lee, Zang-Hee (Research Center for Proteineous Materials, School of Dentistry, Chosun University)
  • Published : 2002.07.31

Abstract

The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

Keywords

References

  1. Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tomesko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D. and Galibert, L. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179. https://doi.org/10.1038/36593
  2. Arch, R. H., Gedrich, R. W. and Thompson, C. B. (1998) Tumor necrosis factor receptor-associated factors (TRAFs)-a family of adapter proteins that regulates life and death. Genes Dev. 12, 2821-2830. https://doi.org/10.1101/gad.12.18.2821
  3. Bogoyevitch, M. A, Thien, M. and Ng, D. C. H. (2001) Characterization of protein kinases activated during treatment of cells with okadaic acid. J. Biochem. Mol. BioI. 34,517-525.
  4. Damay, B. G., Haridas, V., Ni, J., Moore, P. A. and Aggarwal, B. B. (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappaB and c-Jun N-terminal kinase. J. Biol. Chem. 273, 20551-20555. https://doi.org/10.1074/jbc.273.32.20551
  5. Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M. and Davis, R. J. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025- 1037. https://doi.org/10.1016/0092-8674(94)90380-8
  6. Dougall, W. C., Glaccum, M., Charrier, K, Rohrbach, K, Brasel, K, De Smedt, T., Daro, E., Smith, J., Tometsko, M. E., Maliszewski, C. R., Armstrong, A, Shen, V., Bain, S. and Cosman, D., Anderson, D., Morrissey, P. J., Peschon, J. J. and Schuh, J. (1999) RANK is essential for osteoclast and lymph node development. Genes Dev. 15,2412-2424.
  7. Fata, J. E., Kong, Y. Y., Li, J., Sasaki, T., lrie-Sasaki, J., Moorehead, R. A, Elliott, R., Scully, S., Voura, E. B., Lacey, D. L., Boyle, W. J., Khokha, R. and Penninger, J. M. (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 29, 41-50.
  8. Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D. and Dougall, W. C. (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfarnily. J. BioI. Chem. 273, 34120- 34127. https://doi.org/10.1074/jbc.273.51.34120
  9. Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A, Azuma, S. and Yamamoto, T. (2000) Tumor necrosis factor receptor-associated factor (TRAP) family: adapter proteins that mediate cytokine signaling. Exp. Cell Res. 254, 14-24. https://doi.org/10.1006/excr.1999.4733
  10. Kim, H. -H., Lee, D. E., Shin, J. N., Lee, Y. S., Ieon, Y. M., Chung, C. H., Ni, J., Kwon, B. S. and Lee, Z. H. (1999) Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Left. 443, 297-302. https://doi.org/10.1016/S0014-5793(98)01731-1
  11. Kim, H. -H., Kim, H. -M., Kwack, K, Kim, S. W. and Lee, Z. H. (2001) Osteoclast differentiation factor engages the PI 3-kinase, p38, and ERK pathways for avian osteoclast differentiation. J. Biochem. Mol. BioI. 34, 421-427.
  12. Kong, Y. Y., Yoshida, H., Sarosi, J., Tan, H. L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A. J., Van, G., Itie, A, Khoo, W., Wakeham, A., Dunstan, C. R., Lacey, D. L., Mak, T. W., Boyle, W. J. and Penninger, J. M. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397,315-323. https://doi.org/10.1038/16852
  13. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A, Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A, Qian, Y. X., Kaufman, S., Sarosi, I., ShaJhoub, V., Senaldi, G., Guo, J., Delaney, J. and Boyle, W. J. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  14. Lee, Z. H., Kwack, K, Kim, K K, Lee, S. H. and Kim, H. -H. (2000) Activation of c-Jun N-terminal kinase and activator protein 1 by receptor activator of nuclear factor kappaB. Mol. Pharmacol. 58, 1536-1545.
  15. Mizukami, J., Takaesu, G., Akatsuka, H., Sakurai, H., Ninomiya-Tsuji, J., Matsumoto, K and Sakurai, N. (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell Biol. 22, 992-1000. https://doi.org/10.1128/MCB.22.4.992-1000.2002
  16. Moriguchi, T., Kuroyanagi, N., Yamaguchi, K, Gotoh, Y., lrie, K, Kano, T., Shirakabe, K, Muro, Y., Shibuya, H., Matsumoto, K, Nishida, E. and Hagiwara, M. (1996) A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 271, 13675-13679. https://doi.org/10.1074/jbc.271.23.13675
  17. Ninomiya-Tsuji, J., Kishirnoto, K, Hiyama, A, Inoue, J., Cao, Z. and Matsumoto, K (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the JL-1 signaling pathway. Nature 398, 252-256. https://doi.org/10.1038/18465
  18. Qian, Y., Commane, M., Ninomiya-Tsuji, J., Matsumoto, K and Li, X. (2001) lRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NF kappa B. J. Biol. Chem. 276, 41661-41667. https://doi.org/10.1074/jbc.M102262200
  19. Takaesu, G., Kishida, S., Hiyama, A, Yamaguchi, K, Shibuya, H., lrie, K, Ninomiya-Tsuji, j. and Matsumoto, K (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell. 5, 649-658. https://doi.org/10.1016/S1097-2765(00)80244-0
  20. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J. and Chen, Z. J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK Nature 412, 346-351. https://doi.org/10.1038/35085597
  21. Wong, B. R., Josien, R., Lee, S. Y., Vologodskaia, M., Steinman, R. M. and Choi, Y. (1998) The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor.J. BioI. Chem. 273, 28355-28359. https://doi.org/10.1074/jbc.273.43.28355
  22. Wong, B. R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachikov, S., Cayani, E., Bartlett III, F. S., Frankel, W. N., Lee, S. Y. and Choi, Y. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terrninal kinase in T cells. J. BioI. Chem. 272, 25190-25194. https://doi.org/10.1074/jbc.272.40.25190
  23. Yamaguchi, K, Shirakabe, K, Shibuya, H., Irie, K, Oishi, I., Ueno, N., Taniguchi, T., Nishida, E. and Matsumoto, K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270, 2008-2011. https://doi.org/10.1126/science.270.5244.2008
  24. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K, Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K, Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K, Udagawa, N., Takahashi, N. and Suda, T. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597

Cited by

  1. Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling vol.8, pp.2, 2012, https://doi.org/10.1007/s11302-012-9292-9
  2. Exposure of human corneal epithelial cells to contact lenses in vitro suppresses the upregulation of human β-defensin-2 in response to antigens of Pseudomonas aeruginosa vol.85, pp.1, 2007, https://doi.org/10.1016/j.exer.2007.04.001
  3. TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells vol.12, pp.1, 2015, https://doi.org/10.1186/s12950-015-0077-0
  4. Effects of TGF-β, TNF-α, IL-β and IL-6 alone or in combination, and tyrosine kinase inhibitor on cyclooxygenase expression, prostaglandin E2 production and bone resorption in mouse calvarial bone cells vol.36, pp.11, 2004, https://doi.org/10.1016/j.biocel.2004.04.019
  5. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE vol.42, pp.7, 2006, https://doi.org/10.1290/0510075.1
  6. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity vol.300, pp.1, 2003, https://doi.org/10.1016/S0006-291X(02)02787-0
  7. Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling vol.112, pp.1, 2015, https://doi.org/10.1073/pnas.1415213112
  8. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies vol.380, pp.2, 2016, https://doi.org/10.1016/j.canlet.2015.10.036
  9. Osteoprotegerin Protects against Muscular Dystrophy vol.185, pp.4, 2015, https://doi.org/10.1016/j.ajpath.2015.01.006
  10. IL‐1β Induces and TGF‐β Reduces Vitamin D3‐Induced Bone Resorption in Mouse Calvarial Bone Cells vol.32, pp.3, 2003, https://doi.org/10.1081/IMM-120022977
  11. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis vol.14, pp.9, 2010, https://doi.org/10.1517/14728222.2010.511179
  12. Fluoride decreased osteoclastic bone resorption through the inhibition of NFATc1 gene expression vol.29, pp.5, 2014, https://doi.org/10.1002/tox.21784
  13. Proteomic profile of osteoclast membrane proteins: Identification of Na+/H+exchanger domain containing 2 and its role in osteoclast fusion vol.8, pp.13, 2008, https://doi.org/10.1002/pmic.200701192
  14. Toll-like receptor signaling: A perspective to develop vaccine against leishmaniasis vol.167, pp.8, 2012, https://doi.org/10.1016/j.micres.2012.01.002
  15. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells vol.106, pp.8, 2009, https://doi.org/10.1073/pnas.0811073106
  16. Regulatory roles and molecular signaling of TNF family members in osteoclasts vol.350, pp.1, 2005, https://doi.org/10.1016/j.gene.2005.01.014
  17. Proteomic approaches to study osteoclast biology vol.16, pp.19, 2016, https://doi.org/10.1002/pmic.201500519
  18. Raf1 plays a pivotal role in lipopolysaccharide-induced activation of dendritic cells vol.308, pp.2, 2003, https://doi.org/10.1016/S0006-291X(03)01393-7
  19. Transcriptional regulation of human CC chemokine CCL15 gene by NF-κB and AP-1 elements in PMA-stimulated U937 monocytoid cells vol.1732, pp.1-3, 2005, https://doi.org/10.1016/j.bbaexp.2005.11.001
  20. The adaptor protein p62/SQSTM1 in osteoclast signaling pathways vol.7, 2012, https://doi.org/10.1186/1750-2187-7-1
  21. Molecular regulation of osteoclast activity vol.7, pp.1-2, 2006, https://doi.org/10.1007/s11154-006-9009-x
  22. Osteoclasts: New Insights vol.1, pp.1, 2013, https://doi.org/10.4248/BR201301003
  23. Cell-Based Assay Strategy for Identification of Motif-Specific RANK Signaling Pathway Inhibitors vol.4, pp.4, 2006, https://doi.org/10.1089/adt.2006.4.473
  24. RANK signaling pathways as potent and specific therapeutic targets for bone erosion in rheumatoid arthritis vol.1, pp.5, 2006, https://doi.org/10.2217/17460816.1.5.567
  25. Involvement of p38MAPK/NF-κB Signaling Pathways in Osteoblasts Differentiation in Response to Mechanical Stretch vol.40, pp.9, 2012, https://doi.org/10.1007/s10439-012-0548-x
  26. PGE2 induces IL-1β gene expression in mouse osteoblasts through a cAMP–PKA signaling pathway vol.4, pp.6, 2004, https://doi.org/10.1016/j.intimp.2004.03.003
  27. Xenopus death-domain-containing proteins FADD and RIP1 synergistically activate JNK and NF-κB vol.98, pp.8, 2006, https://doi.org/10.1042/BC20050091
  28. 2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6-TAK1 signalling complexes vol.161, pp.2, 2010, https://doi.org/10.1111/j.1476-5381.2010.00823.x
  29. Comprehending the complex connection between PKCβ, TAK1, and IKK in BCR signaling vol.232, pp.1, 2009, https://doi.org/10.1111/j.1600-065X.2009.00836.x
  30. Akt is upstream and MAPKs are downstream of NF-κB in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism vol.43, pp.3, 2011, https://doi.org/10.1016/j.biocel.2010.09.011
  31. BMP signaling and stem cell regulation vol.284, pp.1, 2005, https://doi.org/10.1016/j.ydbio.2005.05.009
  32. PGE2 induces the gene expression of bone matrix metalloproteinase-1 in mouse osteoblasts by cAMP-PKA signaling pathway vol.37, pp.2, 2005, https://doi.org/10.1016/j.biocel.2004.07.013
  33. Osteoimmunology vol.143, pp.1, 2007, https://doi.org/10.1159/000098223