DOI QR코드

DOI QR Code

Potassium Efflux During Apoptosis

  • Park, Il-Seon (Division of Molecular Life Science, Center for Cell Signaling Research, Ewha Womans University) ;
  • Kim, Ja-Eun (Division of Molecular Life Science, Center for Cell Signaling Research, Ewha Womans University)
  • Published : 2002.01.31

Abstract

Keywords

References

  1. Bortner, C. D. and Cidlowski, J. A. (1999) Caspase independent/ dependent regulation of $K^+$,cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. BioI. Chem. 274, 21953-21962. https://doi.org/10.1074/jbc.274.31.21953
  2. Bortner, C D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) A primary role for $K^+$ and $Na^+$ efflux in the activation of apoptosis.J. BioI. Chem.. 272, 32436-32442. https://doi.org/10.1074/jbc.272.51.32436
  3. Bossy-Wetzel, E. and Green, D. R. (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J. Biol. Chem. 274, 17484-17490. https://doi.org/10.1074/jbc.274.25.17484
  4. Cain, K, Bratton, S. B., Langlais, C., Walker, G., Brown, D. G., Sun, X. M. and Cohen, G. M. (2000) Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes.J. BioI. Chem. 275, 6067-6070. https://doi.org/10.1074/jbc.275.9.6067
  5. Chauhan, D., Pandey, P., Ogata, A., Teoh, G., Krett, N., Halgren, R., Rosen, S., Kufe, D., Kharbanda, S. and Anderson, K. (1997) Cytochrome c-dependent and -independent induction of apoptosis in multiple myeloma cells. J. BioI. Chem 272, 29995-29997. https://doi.org/10.1074/jbc.272.48.29995
  6. Chen, P., Tian, J., Kovesdi, I. and Bruder, J. T. (1998) Interaction of the adenovirus 14.7-kDa protein with FLICE inhibits Fas ligand-induced apoptosis. J. BioI. Chem. 273, 5815-5820. https://doi.org/10.1074/jbc.273.10.5815
  7. Chinnaiyan, A. M. (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5-15. https://doi.org/10.1038/sj.neo.7900003
  8. Dallaporta, B., Hirsch, T., Susin, S. A., Zamzarni, N., Larochette, N., Brenner, C., Marzo, I. and Kroemer, G. (1998) Potassium leakage during the apoptotic degradation phase. J. Immunol. 160, 5605-5615.
  9. D'Mello, S. R., Kuan, C Y., Flavell, R. A. and Rakic, P. (2000) Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium. J. Neurosci. Res. 59, 24-31. https://doi.org/10.1002/(SICI)1097-4547(20000101)59:1<24::AID-JNR4>3.0.CO;2-8
  10. Du, C, Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating lAP inhibition. Cell 102, 33- 42. https://doi.org/10.1016/S0092-8674(00)00008-8
  11. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., lwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [see comments]. Nature 391, 43-50. https://doi.org/10.1038/34112
  12. Erhardt, P. and Cooper, G. M. (1996) Activation of the CPP32 apoptotic protease by distinct signaling pathways with differential sensitivity to Bcl-xL. J. Biol. Chem. 271, 17601- 17604. https://doi.org/10.1074/jbc.271.30.17601
  13. Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A. and Martinou, J. C (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on $Mg^{2+}$ ions. J. Cell Bioi. 143, 217-224. https://doi.org/10.1083/jcb.143.1.217
  14. Fiers, W., Beyaert, R., Declercq, W. and Vandenabeele, P. (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719-7730. https://doi.org/10.1038/sj.onc.1203249
  15. Franklin, J. L., Sanz-Rodriguez, C, Juhasz, A., Deckwerth, T. L. and Johnson, E. M., Jr. (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for $Ca^{2+}$ influx but not Trk activation. J. Neurosci. 15, 643-664. https://doi.org/10.1523/JNEUROSCI.15-01-00643.1995
  16. Fujita, E., Jinbo, A., Matuzaki, H., Konishi, H., Kikkawa, U. and Momoi, T. (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun. 264, 550-555. https://doi.org/10.1006/bbrc.1999.1387
  17. Fulton, A. B. (1996) Programmed cell death [letter]. Science 274, 20-21. https://doi.org/10.1126/science.274.5284.20b
  18. Gomez-Angelats, M., Bortner, C D. and Cidlowski, J. A. (2000) Protein kinase C (PKC) inhibits fas receptor-induced apoptosis through modulation of the loss of$k^+$ and cell shrinkage. A role for PKC upstream of caspases. J. Biol. Chem. 275, 19609- 19619. https://doi.org/10.1074/jbc.M909563199
  19. Granville, D.J., Carthy, C.M., Jiang, H., Shore, G. C, McManus, B. M. and Hunt, D. W. (1998) Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett. 437,5-10. https://doi.org/10.1016/S0014-5793(98)01193-4
  20. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P. and Korsmeyer, S. J. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156-1163. https://doi.org/10.1074/jbc.274.2.1156
  21. Hausmann, G., O'Reilly, L. A., van Driel, R., Beaumont, J. G., Strasser, A., Adams, J. M. and Huang, D. C (2000) Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J. Cell BioI. 149, 623-634. https://doi.org/10.1083/jcb.149.3.623
  22. Hu, Y., Benedict, M. A., Ding, L. and Nunez, G. (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J. 18, 3586-3595. https://doi.org/10.1093/emboj/18.13.3586
  23. Hughes, F. M., Jr., Bortner, C D., Purdy, G. D. and Cidlowski,J. A. (1997). Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272, 30567-30576. https://doi.org/10.1074/jbc.272.48.30567
  24. Hughes, F. M., Jr. and Cidlowski, J. A. (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv. Enzyme Regul. 39, 157-171. https://doi.org/10.1016/S0065-2571(98)00010-7
  25. Janicke, R. U., Sprengart, M. L., Wati, M. R and Porter, A. G. (1998a) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357-9360. https://doi.org/10.1074/jbc.273.16.9357
  26. Janicke, R. U., Sprengart, M. L., Wati, M. R. and Porter, A. G. (1998b) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis [In Process Citation] J. Biol. Chem. 273, 9357-9360. https://doi.org/10.1074/jbc.273.16.9357
  27. Juo, P., Kuo, C.J., Yuan, J. and Blenis, J. (1998). Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 8, 1001-1008. https://doi.org/10.1016/S0960-9822(07)00420-4
  28. Kampf, C., Relova, A.J., Sandler, S. and Roomans, G. M. (1999). Effects of TNF-alpha, IFN-gamma and IL-beta on normal human bronchial epithelial cells. Eur. Respir. J 14, 84-91. https://doi.org/10.1034/j.1399-3003.1999.14a15.x
  29. Kluck, R. M., Bossy-Wetzel, E., Green, D. R and Newmeyer, D. D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis [see comments]. Science 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
  30. Kluck, R. M., Esposti, M. D., Perkins, G., Renken, C., Kuwana, T., Bossy-Wetzel, E., Goldberg, M., Allen, T., Barber, M. J., Green, D. R. and Newmeyer, D. D. (1999) The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell BioI. 147, 809-822. https://doi.org/10.1083/jcb.147.4.809
  31. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K, McGarry, T. J., Kirschner, M. W., Koths, K., Kwiatkowski, D. J. and Williams, L. T. (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298. https://doi.org/10.1126/science.278.5336.294
  32. Krajewski, S., Krajewska, M., Ellerby, L. M., Welsh, K., Xie, Z., Deveraux, Q. L., Salvesen, G. S., Bredesen, D. E., Rosenthal, R E., Fiskum, G. and Reed, J. C. (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Nat. Acad. Sci. USA 96, 5752-5757. https://doi.org/10.1073/pnas.96.10.5752
  33. Krippner, A., Matsuno-Yagi, A., Gottlieb, R. A. and Babior, B. M. (1996) Loss of function of cytochrome c in Jurkat cells undergoing fas- mediated apoptosis. J. BioI. Chem. 271, 21629- 21636. https://doi.org/10.1074/jbc.271.35.21629
  34. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  35. Lin, Y., Devin, A., Rodriguez, Y. and Liu, Z. G. (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514-2526. https://doi.org/10.1101/gad.13.19.2514
  36. Liu, D., Martino, G., Thangaraju, M., Sharma, M., Halwani, F., Shen, S. H., Patel, Y. C and Srikant, C. B. (2000) Caspase-8- mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J. Biol. Chem. 275, 9244-9250. https://doi.org/10.1074/jbc.275.13.9244
  37. Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W. T. and Wang, X. (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95, 8461-8466. https://doi.org/10.1073/pnas.95.15.8461
  38. Liu, X., Zou, H., Slaughter, C. and Wang, X. (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175- 184. https://doi.org/10.1016/S0092-8674(00)80197-X
  39. Liu, X., Zou, H., Widlak, P., Garrard, W. and Wang, X. (1999) Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J. BioI. Chem. 274, 13836-13840. https://doi.org/10.1074/jbc.274.20.13836
  40. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-4890. https://doi.org/10.1016/S0092-8674(00)81589-5
  41. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A. and Okada, Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis [see comments]. Proc. Natl. Acad. Sci. USA 97, 9487-9492. https://doi.org/10.1073/pnas.140216197
  42. Martinou, J. C. (1999) Apoptosis. Key to the mitochondrial gate [news; comment]. Nature 399, 411-412. https://doi.org/10.1038/20804
  43. McCarty, J. S., Toh, S. Y. and Li, P. (1999) Multiple domains of DFF45 bind synergistically to DFF40: roles of caspase cleavage and sequestration of activator domain of DFF40. Biochem. Biophys. Res. Commun. 264, 181-185. https://doi.org/10.1006/bbrc.1999.1498
  44. McIlroy, D., Sakahira, H., Talanian, R. V. and Nagata, S. (1999) Involvement of caspase 3-activated DNase in intemucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene 18, 4401-4408. https://doi.org/10.1038/sj.onc.1202868
  45. Minn, A. J., Boise, L. H. and Thompson, C. B. (1996) Bcl-x(S) antagonizes the protective effects of Bcl-x(L). J. Biol. Chem. 271,6306-6312. https://doi.org/10.1074/jbc.271.11.6306
  46. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., K, O. R., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-?-inducing signaling complex. Cell 85, 817-827. https://doi.org/10.1016/S0092-8674(00)81266-0
  47. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365. https://doi.org/10.1016/S0092-8674(00)81874-7
  48. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A. and Yuan,J. (2000) Caspase-12 mediates endoplasmic-reticulum- specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103. https://doi.org/10.1038/47513
  49. Nietsch, H. H., Roe, M. W., Fiekers, J. F., Moore, A. L. and Lidofsky, S. D. (2000) Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death. J Biol. Chem 275, 20556-2056l. https://doi.org/10.1074/jbc.M002535200
  50. Orlov, S. N., Taurin, S., Thorin-Trescases, N., Dulin, N. O., Tremblay, J. and Hamet, P. (2000) Inversion of the intracellular $Na^+/k^+$ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis. Hypertension 35, 1062-1068. https://doi.org/10.1161/01.HYP.35.5.1062
  51. Penning, L. C., Denecker, G., Vercammen, D., Declercq, W., Schipper, R. G. and Vandenabeele, P. (2000) A role for potassium in TNF-induced apoptosis and gene-induction in human and rodent tumor cell lines. Cytokine 12, 747-750. https://doi.org/10.1006/cyto.1999.0626
  52. Purring-Koch, C. and McLendon, G. (2000) Cytochrome c binding to apaf-1: the effects of dATP and ionic strength [In Process Citation]. Proc. Natl. Acad. Sci. USA 97, 11928-1193l. https://doi.org/10.1073/pnas.220416197
  53. Sahara, S., Aoto, M., Eguchi, Y., Imamoto, N., Yoneda, Y. and Tsujimoto, Y. (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation [see comments]. Nature 401, 168-173. https://doi.org/10.1038/43678
  54. Sakahira, H., Enari, M., Ohsawa, Y., Uchiyama, Y. and Nagata, S. (1999) Apoptotic nuclear morphological change without DNA fragmentation. Curr. Biol. 9, 543-546. https://doi.org/10.1016/S0960-9822(99)80240-1
  55. Salvesen, G. S. and Dixit, V. M. (1997) Caspaes: intracellular signaling by proteolysis. Cell 91, 443-446. https://doi.org/10.1016/S0092-8674(00)80430-4
  56. Scaffidi, C., Medema,J. P., Krammer, P. H. and Peter, M. E. (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J. BioI. Chem. 272, 26953-26958. https://doi.org/10.1074/jbc.272.43.26953
  57. Schapira, A. H. (1999) Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia [see comments]. Biochim. Biophys. Acta 1410, 159-170. https://doi.org/10.1016/S0005-2728(98)00164-9
  58. Shieh, C. C., Coghlan, M., Sullivan, J. P. and Gopalakrishnan, M. (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities [In Process Citation]. Pharmacol. Rev. 52, 557-594.
  59. Srinivasan, A., Li, F, Wong, A., Kodandapani, L., Smidt, R, Jr., Krebs, J. F., Fritz, L. C., Wu, J. C. and Tomaselli, K.J. (1998) Bcl-xL functions downstream of caspase-8 to inhibit Fas- and tumor necrosis factor receptor 1-induced apoptosis of MCF7 breast carcinoma cells. J. Biol. Chem. 273, 4523-4529. https://doi.org/10.1074/jbc.273.8.4523
  60. Srinivasula, S. M., Ahmad, M., Femandes-Alnemri, T. and Alnernri, E. S. (1998) Autoactivation of procaspase-9 by Apaf-1- mediated oligomerization. Mol. Cell 1, 949-957. https://doi.org/10.1016/S1097-2765(00)80095-7
  61. Srinivasula, S. M., Datta, P., Fan, X. J., Femandes-Alnernri, T., Huang, Z. and Alnernri, E. S. (2000) Molecular Determinants of the Caspase-promoting Activity of Smac/DIABLO and Its Role in the Death Receptor Pathway. J. Biol. Chem. 275, 36152-36157. https://doi.org/10.1074/jbc.C000533200
  62. Stennicke, H. R., Deveraux, Q. L., Humke, E. W., Reed, J. C., Dixit, V. M., and Salvesen, G. S. (1999). Caspase-9 can be activated without proteolytic processing. J. BioI. Chem 274, 8359-8362. https://doi.org/10.1074/jbc.274.13.8359
  63. Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Ellerby, L. M., Bredesen, D. et al. (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27084- 27090. https://doi.org/10.1074/jbc.273.42.27084
  64. Stennicke, H. R. and Salvesen, G. S. (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J. BioI. Chem. 272, 25719-25723. https://doi.org/10.1074/jbc.272.41.25719
  65. Sun, X. M., MacFarlane, M., Zhuang, J., Wolf, B. B., Green, D. R. and Cohen, G. M. (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem. 274, 5053-5060. https://doi.org/10.1074/jbc.274.8.5053
  66. Tan, K. O., Tan, K. M. and Yu, V. C. (1999) A novel BH3-like domain in BID is required for intramolecular interaction and autoinhibition of pro-apoptotic activity, J. Biol. Chem. 274, 23687-23690. https://doi.org/10.1074/jbc.274.34.23687
  67. Vaillant, A. R., Mazzoni, I., Tudan, C., Boudreau, M., Kaplan, D. R. and Miller, F. D. (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3- kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell BioI. 146, 955-966. https://doi.org/10.1083/jcb.146.5.955
  68. Vier, J., Linsinger, G. and Hacker, G. (1999) Cytochrome c is dispensable for fas-induced caspase activation and apoptosis. Biochem. Biophys. Res. Commun. 261, 71-78. https://doi.org/10.1006/bbrc.1999.0942
  69. Wallach, D. (1997) Apoptosis. Placing death under control [news; comment]. Nature 388, 123, 125-126.
  70. Widmann, C., Gibson, S. and Johnson, G. L. (1998) Caspased-pendent cleavage of signaling proteins during apoptosis. A tum-off mechanism for anti-apoptotic signals. J BioI. Chem. 273, 7141-7147. https://doi.org/10.1074/jbc.273.12.7141
  71. Wolf, B. B., Schuler, M., Echeverri, F. and Green, D. R. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J. Biol. Chem. 274, 30651-30656. https://doi.org/10.1074/jbc.274.43.30651
  72. Wu, G., Chai, J., Suber, T. L., Wu, J. W., Du, C., Wang, X. and Shi, Y. (2000) Structural basis of lAP recognition by Smac/ DlABLO [In Process Citation]. Nature 408, 1008-1012. https://doi.org/10.1038/35050012
  73. Wyllie, A. (1998) Apoptosis. An endonuclease at last [news; comment]. Nature 391, 20-2l. https://doi.org/10.1038/34040
  74. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai,J., Peng, T. I., Jones, D. P. and Wang, X. (1997) Prevention of apoptosis by BcI-2: release of cytochrome c from mitochondria blocked [see comments]. Science 275,1129-1132. https://doi.org/10.1126/science.275.5303.1129
  75. Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H. B., Ella, A. J., Shahinian, A, Ng, M., Wakeham, A, Khoo, W., Mitchell, K. et al. (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954-1958. https://doi.org/10.1126/science.279.5358.1954
  76. Yu, S. P., Yeh, C. H., Gottron, F., Wang, X., Grabb, M. C. and Choi, D. W. (1999) Role of the outward delayed rectifier $K^+$current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J. Neurochem. 73, 933-941. https://doi.org/10.1046/j.1471-4159.1999.0730933.x
  77. Yu, S. P., Yeh, C. H., Sensi, S. L., Gwag, B. J., Canzoniero, L. M., Farhangrazi, Z. S., Ymg, H. S., Tian, M., Dugan, L. L. and Choi, D. W. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114- 117. https://doi.org/10.1126/science.278.5335.114
  78. Zhang, J., Wang, X., Bove, K. E. and Xu, M. (1999) DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wildtype control cells [In Process Citation]. J. Biol. Chem. 274, 37450-37454. https://doi.org/10.1074/jbc.274.52.37450
  79. Zheng, T. S., Schlosser, S. F., Dao, T., Hingorani, R., Crispe, I. N., Boyer, J. L. and Flavell, R. A (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fasmediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 95, 13618-13623. https://doi.org/10.1073/pnas.95.23.13618
  80. Zhuang, S., Lynch, M. C. and Kochevar, I. E. (1999) Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells. Exp. Cell Res. 250, 203-212. https://doi.org/10.1006/excr.1999.4501
  81. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 [see comments]. Cell 90, 405-413. https://doi.org/10.1016/S0092-8674(00)80501-2
  82. Zou, H., Li, Y., Liu, X. and Wang, X. (1999) An APAFl-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. BioI. Chem. 274, 11549-11556. https://doi.org/10.1074/jbc.274.17.11549

Cited by

  1. Platinum nanopetal-based potassium sensors for acute cell death monitoring vol.6, pp.46, 2016, https://doi.org/10.1039/C6RA01664B
  2. The newly identified K+ channel blocker talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons vol.518, pp.2, 2012, https://doi.org/10.1016/j.neulet.2012.04.067
  3. Exposure of colonic epithelial cells to oxidative and endoplasmic reticulum stress causes rapid potassium efflux and calcium influx 2012, https://doi.org/10.1002/cbf.2946
  4. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis vol.36, pp.3, 2012, https://doi.org/10.1016/j.immuni.2012.01.009
  5. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy vol.22, pp.2, 2014, https://doi.org/10.1016/j.intimp.2014.06.040
  6. Coronatin-1 isolated from entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella hemocytes in vitro and forms potassium channels in planar lipid membrane vol.58, pp.4, 2011, https://doi.org/10.1016/j.toxicon.2011.07.007
  7. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology vol.109, 2015, https://doi.org/10.1016/j.envexpbot.2014.06.021
  8. Apoptosis. Signaling pathways and cell ion and water balance vol.1, pp.3, 2007, https://doi.org/10.1134/S1990519X07030030
  9. Mechanisms and physiological roles of K+ efflux from root cells vol.171, pp.9, 2014, https://doi.org/10.1016/j.jplph.2014.01.015