DOI QR코드

DOI QR Code

Identificaiton of the dITP- and XTP-Hydrolyzing Protein from Escherichia coli

  • Chung, Ji-Hyung (Cardiovascular Genome Center, Yonsei University College of Medicine, Yonsei University) ;
  • Park, Hyun-Young (Cardiovascular Genome Center, Yonsei University College of Medicine, Yonsei University) ;
  • Lee, Jong-Ho (Yonsei Research Institute of Aging Science, Yonsei University College of Medicine, Yonsei University) ;
  • Jang, Yang-Soo (Cardiovascular Genome Center, Yonsei University College of Medicine, Yonsei University)
  • 발행 : 2002.07.31

초록

A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197(termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphates with an O6 atom-containing purine base to nucleoside monophosphate and pyrophosphate. The EcO197 protein had a strong preference for deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP), while it had little activity in the standard nucleoside triphosphates (dATP, dCTP, dGTP, and dTTP). These aberrant nucleotides can be produced by oxidative deamination from purine nucleotides in cells; they are potentially mutagenic. The mutation protection mechanisms are caused by the incorporation into DNA of unwelcome nucleotides that are formed spontaneously. The EcO197 protein may function to eliminate specifically damaged purine nucleotide that contains the 6-keto group. This protein appears to be the first eubacterial dITP-and XTP-hydrolyzing enzyme that has been identified.

키워드

참고문헌

  1. Altschul, S. E, Thomas, L. M., Alejandro, AS., Jinghui, Z., Zheng, Z., Webb, M. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Asaeda, A, Ide, H., Asagoshi, K, Matsuyama; S.,Tano, K, Marakami, A, Takamori, Y. and Kubo, K (2000) Substrate specificity of human methylpurine DNA N-glycosylase. Biochemistry 39, 1959-1965. https://doi.org/10.1021/bi9917075
  3. Auer, T., Sninsky, J. J., Gelfand, D. H. and Myers, T. W. (1996) Selective amplification of RNA utilizing the nucleotide analog dITP and Thennus thennophilus DNA polymerase. Nucleic Acids Res. 24, 5021-5025. https://doi.org/10.1093/nar/24.24.5021
  4. Bebenek, K., Joyce, C. M., FitzgeraId, M. P. and Kunkel, T. A (1990) The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J. Bioi. Chem. 265, 13878-13887.
  5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Bridges, B. A (1997) MutT prevents leakiness. Science 278, 78-79. https://doi.org/10.1126/science.278.5335.78
  7. Cline, J., Brarnan, J. C. and Hogrefe, H. H. (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546-3551. https://doi.org/10.1093/nar/24.18.3546
  8. De Flora, S., Camoirano, A, D' Agostini, E and BaIansky, R. (1992) Modulation of the mutagenic response in prokaryotes. Mutat. Res. 267, 183-192. https://doi.org/10.1016/0027-5107(92)90062-7
  9. Donlin, M. J. and Johnson, K. A. (1994) Mutants affecting nucleotide recognition by T7 DNA polymerase. Biochemistry 33, 14908-14917. https://doi.org/10.1021/bi00253a030
  10. Fowler, R G. and Schaaper, R M. (1997) The role of the muiT gene of Escherichia coli in maintaining replication fidelity. FEMS Microbiol. Rev. 21, 43-54. https://doi.org/10.1111/j.1574-6976.1997.tb00344.x
  11. Friedberg, E. e., Walker, G. C. and Siede, W. (1995) DNA damage; in DNA repair and mutagenesis, Friedberg, E. C., Walker, G. C. and Siede, W. (eds.), pp. 1-58, ASM Press, Washington, D.C.
  12. Garcia-Diaz, M., Bebenek, K., Sabariegos, R, Dorninguez, O., Rodriguez, J., Kirchhoff, T., Garcia-Palomero, E., Picher, A. J., Juarez, R, Ruiz, J. F., Kunkel, T. A. and Blanco, L. (2002) DNA polymerase lambda, a novel DNA repair enzyme in human cells. J. BioI. Chem. 277, 13184-13191. https://doi.org/10.1074/jbc.M111601200
  13. He, B., Qing, H. and Kow, Y W. (2000) Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat. Res. 459, 109-114. https://doi.org/10.1016/S0921-8777(99)00063-4
  14. Heringa, J. (1999) Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23, 341-364. https://doi.org/10.1016/S0097-8485(99)00012-1
  15. Holmes, S. L., Turner, B. M. and Hirschhom, K. (1979) Human inosine triphosphatase: Catalytic properties and population studies. Clinica Chimica Acta 97, 143-153. https://doi.org/10.1016/0009-8981(79)90410-8
  16. Hwang, K. Y, Chung, J. H., Kim, S-H., Han, Y S. and Cho, Y (1999) Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat. Struct. BioI. 6, 691-696. https://doi.org/10.1038/10745
  17. Kim, Y, Hong, Y B., Suh, S. W. and Jung, G. (2000) Nucleotide insertion fidelity of hurnan hepatitis B viral polymerase. J. Biochem. Mol. Biol. 33, 126-132.
  18. Larsson, G., Nyman, P. O. and Kvassman, J.-O. (1996) Kinetic characterization of dUTPase from Escherichia coli. J. BioI. Chem. 271, 24010-24016. https://doi.org/10.1074/jbc.271.39.24010
  19. Lee, S.-H. (2001) Recognition of DNA damage in mammals. J. Biochem. Mol. BioI. 34, 489-495.
  20. Lindahl, T. (1979) DNA glycosylases, endonucleases for apurinic/ apyriroidinic sites, and base excision-repair. Prog. Nucleic Acid. Res. Mol. Biol. 22, 135-192. https://doi.org/10.1016/S0079-6603(08)60800-4
  21. Lindahl, T., Karran, P. and Wood, R. D. (1997) DNA excision repair pathways. Curr. Opin. Genet. Develop. 7, 158-169. https://doi.org/10.1016/S0959-437X(97)80124-4
  22. Maki, H. and Sekiguchi. M. (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273-275. https://doi.org/10.1038/355273a0
  23. McIntosh, E. M., Ager, D. D., Gadsden, M. H. and Haynes, R H. (1992) Human dUTP pyrophosphatase: cDNA sequence and potential biological importance of the enzyme. Proc. Natl. A cad. Sci. USA 89, 8020-8024. https://doi.org/10.1073/pnas.89.17.8020
  24. Petit, e. and Sancar, A. (1999) Nucleotide excision repair: from E. coli to man. Biochimie 81, 15-25. https://doi.org/10.1016/S0300-9084(99)80034-0
  25. Saparbaev, M., Mani, J. e. and Laval, J. (2000) Interactions of the human, rat, S. cerevisiae and E. coli 3-methyladenine DNA glycosylases with DNA containing dIMP residues. Nucleic Acids Res. 28, 1332-1339. https://doi.org/10.1093/nar/28.6.1332
  26. Schouten, K. A. and Weiss, B. (1999) Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat. Res. 435, 245-254. https://doi.org/10.1016/S0921-8777(99)00049-X
  27. Shapiro, R. and Pohl, S. H. (1968) The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry 7, 448-455. https://doi.org/10.1021/bi00841a057
  28. Shuman, S. and Moss, B. (1988) Factor-dependent transcription termination by vaccinia virus RNA polymerase. Evidence that the cis-acting termination signal is in nascent RNA. J. BioI. Chem. 263, 6220-6225.
  29. Spee. J. H., Devos, W. M. and Kuipers, O. P. (1993) Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777-778. https://doi.org/10.1093/nar/21.3.777
  30. Thomas, K. R., Manlapaz-Romos, P., Lundqvist, R and Olivera, B. (1978) Formation of okazaki pieces at the Escherichia coli replication fork in vitro. Cold Spring Harbor Symp. Quant. Biol. 43, 231-237.
  31. Vanderheiden, B. S. (1969) Genetic studies of human erythrocyte inosine triphosphatase. Biochem. Genet. 3, 289-297. https://doi.org/10.1007/BF00521144
  32. Vanderheiden, B. S. (1979) Inosine di- and triphosphate synthesis in erythrocytes and cell extracts. J. Cell Physiol. 99, 287-301. https://doi.org/10.1002/jcp.1040990303
  33. van Waeg, G., Niklasson, F., Ericson, A. and de Verdier, C. H. (1988) Purine metabolism in normal and ITP-pyrophosphohydrolase- deficient human erythrocytes Clinica Chimica Acta 171, 279-292. https://doi.org/10.1016/0009-8981(88)90154-4
  34. Wang, J. K. and Morris, A. J. (1974) The distribution of nucleoside triphosphate pyrophosphohydrolase in the tissues of the rabbit. Arch. Biochem. Biophys. 161, 118-124. https://doi.org/10.1016/0003-9861(74)90241-0
  35. Wood. R D. (1996) DNA repair in eukaryotes. Annu. Rev Biochem. 65, 135-167. https://doi.org/10.1146/annurev.bi.65.070196.001031
  36. Yao. M., Hatahet, Z., Melamede, R J. and Kow, Y W. (1994) Purification and characterization of a novel deoxyinosinespecific enzyme, deoxyinosine 3' -endonuclease, from Escherichia coli. J. Bioi. Chem. 269, 16260-16268.

피인용 문헌

  1. Molecular Basis of the Antimutagenic Activity of the House-Cleaning Inosine Triphosphate Pyrophosphatase RdgB from Escherichia coli vol.374, pp.4, 2007, https://doi.org/10.1016/j.jmb.2007.10.012
  2. A disease spectrum for ITPA variation: advances in biochemical and clinical research vol.23, pp.1, 2016, https://doi.org/10.1186/s12929-016-0291-y
  3. Production of clastogenic DNA precursors by the nucleotide metabolism inEscherichia coli vol.75, pp.1, 2010, https://doi.org/10.1111/j.1365-2958.2009.06994.x
  4. Identification of an ITPase/XTPase in Escherichia coli by Structural and Biochemical Analysis vol.13, pp.10, 2005, https://doi.org/10.1016/j.str.2005.07.007
  5. Identification of the Most Accessible Sites to Ribozymes on the Hepatitis C Virus Internal Ribosome Entry Site vol.36, pp.6, 2003, https://doi.org/10.5483/BMBRep.2003.36.6.538
  6. Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA vol.109, pp.7, 2012, https://doi.org/10.1073/pnas.1118455109
  7. Analysis of human ITPase nucleobase specificity by site-directed mutagenesis vol.95, pp.9, 2013, https://doi.org/10.1016/j.biochi.2013.05.016