Multi-Objective Optimization of Steel Frames For Standardized Steel Profiles Under Seismic Loads

지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계

  • 조효남 (한양대학교 토목.환경공학과) ;
  • 민대홍 (안산공과대학 토목과) ;
  • 정봉교 (한양대학교 토목.환경공학과)
  • Received : 2002.08.21
  • Published : 2002.12.27

Abstract

An improved formulation for multi-objective optimization was proposed. This formulation was applied to steel seismic loads. The multi-objective optimization problem was formulated with minimum structural weight, maximum strstability. The global criterion method was employed to find a rational solution closest to the ideal solution for the optimization problem using standard steel profile, To efficiently solve the optimization problem, the decomposition meth both system-level and element-level was used. In addition, various techniques including efficient reanalysis technique intermediate variables and sensitivity analysis using an automatic differentiation(AD) were incorporated. Moreover the reamong section properties fitted to the section profile used in order to link the system level and the element level. From numerical investigation, it could be stated that the proposed method will lead to the more rational design compared with one.

본 논문에서는 지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계 정식화 방법을 제안하였다. 다목적 최적화 문제는 강재중량, 변형에너지, 안전성을 목적함수로 구성하였다. 표준단면제원을 이용한 다목적 최적설계 문제를 효율적으로 해결하기 위하여 전역기준법(Global Criterion Method)을 이용하였다. 실제적인 대형구조물의 다목적 최적설계 문제를 효율적으로 해결하기 위해 전체 구조계와 구조 요소계로 나누는 다단계 알고리즘을 적용하였고 자동미분을 이용하여 매개변수에 대한 민감도해석을 이용한 근사재해석 기법을 사용하였다. 또한 전체 구조계와 구조 요소계의 연결을 위해 표준단면을 이용하여 단면 2차 모멘트와 단면적, 단면상수와의 관계를 희귀분석 하였다. 수치해석 결과 안정성을 고려한 강 뼈대 구조물의 최적설계 방법은 기존의 방법보다 합리적인 설계를 유도할 것으로 기대된다.

Keywords

References

  1. 강구조학회 논문집 v.12 no.6 자동미분을 이용한 뼈대구조의 다단계 최적설계 조효남;정지승;민대홍
  2. AISC Load and Resistance Factor Design Manual of steel construction
  3. ASIC Load and resistance factor design specification for structural steel buildings
  4. AISC Seismic provisions for structural steel buildings
  5. Computational differentiation techniques, tools, and applications Berz, M.
  6. Scientific Programming ADIFOR-generating derivative codes from FORTRAN 77 programs Bichof, C.
  7. IEEE Computational Sci. & Eng. v.3 no.3 The ADIFOR2.0 system for the automatic differentiation of FORTRAN 77 programs Bischof, C.
  8. AIAA Journal v.33 Multilevel decom- position procedure for effecient design optimization of helicopter rotor blades Chattopadhyay, A.
  9. Computers Math & Applic v.27 A multidisciplinary optimization using semianalytical sensitivity analysis procedure and multilevel decomposition Chatopadhyay, A.;Pagaldipti, N.
  10. Artificial Intelligence v.12 A comparison of various optimization algorithms on a multilevel problem El-Beltagy, M. A.;Keane, A. J.
  11. Engineering Structures v.21 Multi-objective and multi-level optimization for steel frames Gang, L.
  12. Engineering Computations v.16 Optimization of trusses using genetic algorithms for discrete and continuous variables Ghasemi, M. R.
  13. Ph. D. thesis Computer-Aided Gas pi-peline using Genetic Algorithm and Rule Learning Goldberg, D. E.
  14. Society of Industrial and Applied Mathematics Automatic differentiation of algorithms : thoery, implementation, and application. Griewank, A.;Corliss, G. F.
  15. Structural Optimization Optimal design of steel structures using standard sections Huang, M. W.
  16. Computers & IndustrialEngineering v.38 Multi-product planning and scheduling using genetic algorithm approach Ip, W. H.
  17. ASCE Journal of the Structural design v.101 Multilevel approach to optimum structural design Kirsch, U.
  18. Wiley Interscience Engineering Optimization: Theory and Practice. Rao, S. S.
  19. AIAA Journal v.23 Structurral optimization by multilevel decomposition Sobieszczanski-Sobieski, J.
  20. International Conference of Building Official Uniform Building Code Standards
  21. ASD A FORTRAN Program for Automated Design Synthesis, Engineering Design Optimization Vanderplaats, G. N.