지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계

Multi-Objective Optimization of Steel Frames
For Standardized Steel Profiles Under Seismic Loads

조 효 남 ${ }^{11}$ - 민 대 홍 ${ }^{2)}$. 정 봉 꾜 ${ }^{31}$
Cho, Hyo Nam Min, Dae Hong Jeong, Bong Gyo

요 약: 본 논문에서는 지진하중을 받는 강뺴대구조물의 표준단면에 대한 다목적 최적설계 정식화 방법올 제안하였다. 다목적 최적화 문 제는 강재중량, 변헝에너지. 안정성을 목적함수로 구성하였다. 표준단면제원을 이옹한 다목적 최적설계 문제를 효율적으로 해결하기 위하여 전 역기준법(Global Criterion Method)을 이용하였다. 실제적인 대형 구조물의 다목적 최적설계 문제를 효율적으로 해결하기 위해 전체 구조계 와 구조 요소계로 나누는 다단계 알고리즘을 적용하였고 자동미분을 이용하여 매개변수에 대한 민감도해석을 이용한 근사재해석 기법을 사용 하였다. 또한 전체 구조계와 구조 요소계의 연결을 위해 표준단면을 이용하여 단면 2 차 모멘트와 단면적, 단면상수와의 관계를 회귀분석 하였 다. 수치해석 결과 안정성을 고려한 강 뼈대 구조물의 최적설계 방법은 기존의 방법보다 합리적인 설계를 유도할 것으로 기대된다.
ABSTRACT : An improved formulation for multi-objective optimization was proposed. This formulation was applied to steel seismic loads. The multi-objective optimization problem was formulated with minimum structural weight, maximum str stability. The global criterion method was employed to find a rational solution closest to the ideal solution for the optimization problem using standard steel profile, To efficiently solve the optimization problem, the decomposition meth both system-level and element-level was used. In addition, various techniques including efficient reanalysis technique intermediate variables and sensitivity analysis using an automatic differentiation(AD) were incorporated. Moreover, the re among section properties fitted to the section profile was used in order to link the system level and the element level. Fr, numerical investigation, it could be stated that the proposed method will lead to the more rational design compared with one.

핵 심 용 어 : 강 뼈대 구조물, 다목적 최적설계, 안정성, 표준단면제원
KEYWORDS : Steel frames, Multi-objective optimization, Stability, Standard steel profile

1. 서 론

오늘날 실제적인 구조물의 최적화 문제는 두개 이상의 목 적함수를 필요로 한다. 중량의 감소에 따른 비용절감, 변형에 너지의 증가에 따른 내진성능 개선 또는 처짐의 최소화 등이 그 예이다. 두개 이상의 목적함수를 갖는 쳐적설계를 수행하 기 위해서 다목적 최적화 방법이 필요하다. 1896 년 Pareto 에 의해 최초로 다목적 최적설계에 대한 연구가 발표되었다.

[^0]그러나 1960 년대 후반에 이르기까지 그다지 관심을 끌지 못 하였고 1970 년대에 이르러 다목적 최적설계에 관한 연구가 발표되기 시작하였다(Fishburn, 1970; Ignizio, 1976; Cohon, 1978; Carmichael and Irvine, 1980: Osyczka, 1984; Kim, 1989; Eschenauer et al., 1990; Ringuest, 1992). 그러나 대부분 연구는 이론에 치우쳐 공학 설계 문제에 적용 된 경우는 거의 없었다. 1990 년대에 이르러서야 구조최적화 에서 다목적 최적설계에 관한 연구가 등장하였고 계산의 효

본 논문에 대한 토의를 2003년 6 월 30 일까지 학회로 보내주시면 토의 회답을 게재하젰습니다.

율성을 개선하기 위해 다단계 쳐적화 방법8,9),101,17),19)을 이 용한 다목적 최적설계에 대한 연구가 시작되었다(Kirsch, U., 1975; Haftka RT., 1984; James, 1985). 최근 연 구중의 하나로 Gang Li et al.(1999)11)는 강재중량을 최 소화하여 경제성을 확보함과 동시에 변형에너지를 최대화함 으로써 에너지 흡수능력을 최대화하여 내진성능을 항상시키 기 위하여 강재중량과 변형에너지를 목적함수로 하는 다단계 다목적 최적설계 알고리즘을 제안하였다. 그러나 각 층 요소 의 안정성을 고려하지 않아 전체 구조물의 안정성을 보장할 수가 없다. 본 논문에서는 강재중량과 변형에너지 뿐만 아니 라 또 다른 설계성능인 안정성을 고려하여 목적함수를 정식 화하였다. 또한 건설공사의 설계와 시공에서는 표준화된 이산 형 강재단면을 이용하고 있으나. 연속형 변수를 이용하였기 때문에 표준강재단면을 사용하기 위해 별도의 이산화 과정을 가지게 되므로 설계결과의 최적성을 보장할 수 없다. ${ }^{15)}$ 따라 서 본 논문에서는 시방서에 규정된 강재제원표의 표준단면을 이 용하기 위해 개선된 다목적 쳐적설계 방법을 제안하였다. 다목 적 최적화 문제는 모든 목적함수를 돟시에 최소화하는 유일한 해가 존재하지 않는다. 목적함수의 가중치의 변화에 따른 Pareto 곡선을 작도하여 곡선상의 한 점을 선택하는 Pareto 형식이 다목적 함수의 최적해를 구하는 것이 일반적인 방법이 다. 그러나 본 논문에서는 표준단면을 이용한 이산형 변수를 사 옹하여 Pareto 곡선이 불연속적이기 때문에 Pareto 형식의 문 제해결 방법이 적합하지 않다. 따라서, 본 논문에서는 표준단면 에 대한 다목적 최적설계를 합리적으로 수행하기 위하여 각 목 적함수의 이상적인 값과의 편차를 최소로 하는 전역기준법 (Global Criterion Method)을 이용하였다.
실질적인 대형구조물의 최적설계에서 설계변수의 수가 많 아지게 되며, 그로 인해 전역 최적해 알고리즘 뿐만 아니라 국부 쳐적해 알고리즘에서조차도 계산시간은 설계변수의 수 에 대해 기하급수적으로 증가하게 되어 엄청난 계산비용이 소요된다. 본 논문에서는 구조응답에 대한 엄청난 구조재해석 비용이 요구되는 다단계 알고리즘이 갖는 문제점들을 개선하 고자 자동미분 ${ }^{50,6,7), 14)}$ 을 이용한 근사 재해석에 기초하는 연 속헝 최적설계와 구조 요소계에서 구조해석이 필요하지 않은 유전자 알고리즘 ${ }^{12), 13), 16)}$ 을 이용한 이산형 최적설계 과정으로 각각 구성하였다. 제안된 목적함수의 정식화 방법의 합리성을 검증하기 위하여 지진하중을 받는 강빼대구조물에 적용하여 목적함수의 구성에 따른 설계성능을 비교하였다.

2. 최적설계 문제의 정식화

본 논문에서는 강뼉대구조물의 안정성을 확보하기 위해 기

존연구(Gang et al, 1999)의 정식화에서 고려한 중량과 변 형에너지뿐만 아니라 안정성을 고려하여 목적함수를 정식화 하였다. $\mathrm{UBC}-199420$)에서는 뼈대구조물의 전체적인 안정 성의 평가를 위하여 P - Δ 효과에 의한 층변위 뿐만 아니라 지 진력에 의한 전단력과 모멘트를 고려해야 한다고 명시하고 있으며 i 번째 층의 안정성 계수 θ 를 $P-\Delta$ 효과에 의한 2 차 모멘트와 수평 지진력에 의한 i 번째 충에서의 모멘트 비로 정의하고 있다. 따라서 본 논문에서는 안정성 계수 θ 를 최소화 함으로써 구조물의 안정성을 고려하였다. 지진하중을 받는 표준 단면에 대한 강뼈내구조물의 다목적 최적화 문제는 다음과 같이 전체 구조계와 구조 요소계로 나누어 정식화할 수 있다.

전체 구조계
목적함수 $F\left(\boldsymbol{X}_{S}\right)=\left\{W\left(\boldsymbol{X}_{S}\right),-E\left(\boldsymbol{X}_{S}\right), \theta\left(\boldsymbol{X}_{S}\right)\right\}$
설계변수 $X_{S}{ }^{L} \leq X_{S} \leq X_{S}{ }^{U}$
제약조건 $\quad G_{j}\left(\boldsymbol{X}_{s}\right) \leq 0 \quad j=1,2, \ldots, N_{s}$

$$
\begin{array}{ll}
\text { 여기서. } & W\left(\boldsymbol{X}_{S}\right)=\sum \rho A_{i} h_{i} \\
& E\left(\boldsymbol{X}_{\boldsymbol{S}}\right)=\frac{1}{2} V_{i} \delta_{i} \\
& \theta\left(\boldsymbol{X}_{S}\right)=\frac{M_{i S}}{M_{i p}}=\frac{P_{i} \Delta_{i}}{V_{i} h_{i}}
\end{array}
$$

$\boldsymbol{X}_{\boldsymbol{S}}=$ 전체 구조계 설계변수; $\boldsymbol{F}\left(\boldsymbol{X}_{\boldsymbol{S}}\right)=$ 목적함수; $\boldsymbol{W}\left(\boldsymbol{X}_{S}\right)$ $=$ 총 중량; $\rho=$ 강재의 단위중량; $A_{i}=i$ 번째 요소의 단면적; $h_{i}=i$ 번째 요소의 높이; $E\left(\boldsymbol{X}_{S}\right)=$ 변형에너지; $V_{i}=i$ 번째 충 전단력; $\delta_{i}=i$ 번째 층 횡변위; $\theta\left(X_{S}\right)=$ 안정성 계수; $M_{i p}=$ 수평 지진력에 의한 i 번째 충의 모먼트; $M_{i s}=P-\Delta$ 효과에 의한 i 번째 층의 2 차 모멘트; $P_{i}=i$ 번째 층 상부의 중량; $\Delta_{i}=i$ 번째 충간 상대변위; $G_{j}\left(X_{S}\right)=j$ 번째 제약조건: $N_{s}=$ 제약조건 개수; $\boldsymbol{X}_{S}{ }^{L}, \boldsymbol{X}_{S}{ }^{U}=$ 설계변수의 상/하한치;

$$
\begin{array}{ll}
\text { 구조 요소계 } & \\
\text { 목적함수 } & W_{i}\left(\boldsymbol{X}_{\boldsymbol{E}}\right) \\
\text { 설계변수 } & \boldsymbol{X}_{\boldsymbol{E}}{ }^{L} \leq \boldsymbol{X}_{\boldsymbol{E}} \leq \boldsymbol{X}_{\boldsymbol{E}}{ }^{U} \\
\text { 제약조건 } & \boldsymbol{g}_{j}\left(\boldsymbol{X}_{S, j}^{*}, \boldsymbol{X}_{\boldsymbol{E}}\right) \leq 0, \\
& \boldsymbol{g}_{k}\left(\boldsymbol{X}_{\boldsymbol{E}}\right) \leq 0 \quad k=1,2, \ldots, n_{\boldsymbol{j}}
\end{array}
$$

여기서, $X_{E}=\left(I D_{1}, I D_{2}, \cdots, I D_{n}\right)$ and $X_{E} \in L ; X_{E}=$ 구 조 요소계 설계변수: $W_{i}\left(X_{E}\right)=i$ 번째 요소의 중량; $g_{k}\left(X_{E}\right)$ $=k$ 번째 제약조건; $n_{j}=$ 제약조건 개수; $\boldsymbol{X}_{E}{ }^{L}, \boldsymbol{X}_{\boldsymbol{E}}{ }^{U}=$ 설계변

수의 상/하한치; $L=$ 단면번호; $g_{j}\left(\boldsymbol{X}_{s, j}^{*}, \boldsymbol{X}_{E}\right)=$ 추가 제약조 건; $X_{S . j}^{*}=$ 전체 구조계의 i 번째 요소의 단면 2 차 모멘트; $I D_{i}=ㄷ ㅏ ㅇ ㅡ ㅁ ㅈ ㅓ ㄹ ㅇ ㅔ ㅅ ㅓ ~ ㅈ ㅏ ㅅ ㅔ ㅎ ㅣ ~ ㅅ ㅗ ㄱ ㅐ ㄷ ㅚ ㄴ ㅡ ㄴ ~ " ㅍ ㅛ ㅈ ㅜ ㄴ ㄷ ㅏ ㄴ ㅁ ㅕ ㄴ ~ ㅈ ㅔ ㅇ ㅝ ㄴ ㅍ ㅛ ㅇ ㅢ ~ ㄷ ㅏ ㄴ ㅁ ㅕ ㄴ ㅂ ㅓ ㄴ ~$ 호"아다.

2.1 설계변수

뼈대구조물의 전체 구조계 설계변수 X_{S} 와 구조 요소계 설계변수 $\boldsymbol{X}_{\boldsymbol{E}}$ 는 그림 1 에 나타낸 바와 같이 각 충의 단면 2 차 모멘트와 표준단면 제원표의 단면번호로 각각 정의하였으 며, 이를 벡터형식으로 표현하면 다음과 같다.

$$
\begin{align*}
X_{S} & =\left(I_{1}, I_{2}, \cdots, I_{n}\right) \tag{1}\\
X_{E} & =\left(I D_{1}, I D_{2}, \cdots, I D_{n}\right) \tag{2}
\end{align*}
$$

여기서, $I_{i}=i$ 번째 층 부재의 단면 2 차 모멘트; $I D_{i}=$ 표 준단면 제원표의 단면번호

그립 1. 형 단면율 가지는 감 뼈대구조

강재 제원표는 AISC 매뉴얼 ${ }^{2}$ 에서 표준화된 W형식의 단 면 제원으로 구성하였으며, 효율적인 계산수행을 위해 128 개 의 단면과 5 개의 단면높이별(W10, W12, W14, W16, W 18)로 나누어 데이터베이스화하고 각각을 단면번호. 이름, 웨브 높이. 플랜지 폭, 플랜지 두깨, 웨브 두께와 기타 단면 물성치들로서 표 1 과 같이 구성하였다.

2.2 목적함수

전체 구조계의 목적함수는 총 중량, 변형에너지 그리고 안 정성을 고려하여 정식화하였고, 본 논문에서 제안한 표준단면 에 대한 다목적 최적화 문제의 합리적인 해를 구하기 위해 전역기준법(Global Criterion Method)18)을 이용하였다. 따라서, 전체 구조계의 목적함수는 다음과 같이 정식화 할 수 있다.

$$
\begin{equation*}
F\left(\boldsymbol{X}_{S}\right)=\sum_{i}\left(\frac{f_{i}\left(\boldsymbol{X}_{S i}{ }^{*}\right)-f_{i}\left(\boldsymbol{X}_{S}\right)}{f_{i}\left(\boldsymbol{X}_{S i}{ }^{*}\right)}\right)^{p_{i}} \tag{3}
\end{equation*}
$$

여기서, $f_{i}\left(X_{S}\right)=$ 총 중량, 변형에너지, 안정성 계수; $f_{i}\left(X_{S i}{ }^{*}\right)=$ 각 목적함수의 이상적인 값; $p_{i}=$ 상수

일반적으로 $p_{i}=2$ 를 사용하며, 본 논문에서는 세 가지 목적함수에 대하여 동일하게 $p_{i}=2$ 를 사용함으로써 각 목적 함수에 대한 기중치를 동일하게 두는 것과 같은 효과를 주었 다. 목적함수의 이상적인 값은 강재중량, 변형에너지. 안정성 을 각각 목적함수로 하는 단일목적함수의 최적설계를 수행하 여 계산하였다.

또한, 구조 요소계의 목적함수는 각 충 요소의 중량으로서 다음과 같이 나타낼 수 있다.

$$
\begin{equation*}
W_{i}\left(\boldsymbol{X}_{E}\right)=\rho A_{i} h_{i} \tag{4}
\end{equation*}
$$

표 1. 표준단면 데이터베이스 (AISC W형 강재)

단면번호	강종	웨브 높이 (in)	플랜지 폭 (in)	웨브 두께 (in)	플랜지 두께 (in)	단면적 (in2)	$\begin{gathered} \mathrm{I}(\mathrm{X}-\mathrm{X}) \\ I(\mathrm{in} 4) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}(\mathrm{X}-\mathrm{X}) \\ S(\mathrm{in} 3) \end{gathered}$
1	W10×12	9.87	3.96	0.19	0.21	3.54	53.8	10.9
2	W10×15	9.99	4.00	0.23	0.27	4.41	68.9	13.8
:				;				!
36	W12×58	12.19	10.01	0.36	0.64	17	475	78
!				.				:
65	W16×100	16.97	10.425	0.585	0.985	29.4	1490	175
.				:				:
128	W18×311	22.32	12.005	1.520	2.740	91.5	6960	624

[^1]여기서, $W_{i}\left(\boldsymbol{X}_{\boldsymbol{E}}\right)=i$ 번째 요소의 중량; $\rho=$ 단위중량; $A_{i}=i$ 번째 요소의 단면적; $h_{i}=i$ 번째 요소의 층 높이

2.3 제약조건

최적화 문제의 제약조건을 설계제약조전, 진동수제약조건, 관계제약조건으로 구성하여 적용하였다.

2.3.1 설계제약조건

AISC-LRFD3)와 AISC 내진규정4)에 따라 강뼈대구조 물의 최적설계에 대한 기본적인 설계제약조건을 표2에 나타 내었다.

2.3.2 진동수 제약조건

진동수 제약조건은 고유진동수가 진동수 제한구역이라고 불리는 범위를 벗어나게 하기 위해 사용된다. 진동수 제약조 건은 다음과 같다.

$$
\begin{equation*}
\omega_{j} \notin\left[\omega_{a}, \omega_{b}\right] \quad j=1, \ldots, m \tag{5}
\end{equation*}
$$

여기서, $\omega_{j}=j$ 번째 고유진동수; $\omega_{a}, \omega_{b}=$ 각각 진동수 제 구역의 상/하한 경계

2.3.3 관계제약조건

전체 구조계와 구조 요소계의 설게변수를 확실하게 일치시 키기 위해 전체 구조계와 구조 요소계 사이에 연결장치로 구 조 요소계 최적화에서 추가적인 관계제약조건을 고려하였다. 추가적인 관계제약조건은 전체 구조계와 구조 요소계 최적화 의 수렴과 최종 최적화에서 영향을 미칠 뿐만 아니라 다단계 최적화문제에서 매우 중요하다. 요소에 대한 단면 2차모멘트 에 대한 등제약조건을 다음과 같은 추가적인 관계제약조건으 로 나타내었다.

$$
\begin{equation*}
I_{i} \leq I_{i}^{*} \tag{6}
\end{equation*}
$$

여기서, I_{i} 는 전체 구조계의 i 번째 요소에 대한 최적단면 2 차 모멘트이며, I_{i}^{*} 는 구조 요소계의 i 번째 요소에 대한 최 적 단면 2차 모멘트이다.

2.4 표준단면에 대한 단면계수의 관계식

전체 구조계의 최적화 과정에서 설계변수로 단면 2차 모멘트 (I) 를 사용하였다. 그러나 전체 구조계의 목적함수와

표 2. 국부좌굴과 강도에 대한 제약조건

단계	설계 제약조건		비고
$\begin{aligned} & \text { 전 } \\ & \text { 체 } \\ & \text { 구 } \\ & \text { 조 } \\ & \text { 계 } \end{aligned}$	강도	$\frac{P_{u}}{\phi_{c} P_{y}} \geq 0.2$ 에 대해 $\frac{P_{u}}{\phi_{c} P_{y}}+\frac{8 M_{u}}{9 \phi_{\Delta} M_{n}} \leq 1.0$ $\frac{P_{u}}{\phi_{c} P_{y}}<0.2$ 에 대해 $\frac{P_{u}}{2 \phi_{c} P_{y}}+\frac{M_{u}}{\phi_{b} M_{n}} \leq 1.0$	$\begin{gathered} P_{u}: \text { 극한압축강도 } \\ P_{n}: \text { 공칭압축강도 } \\ M_{u}: \text { 극한횜강도 } \\ M_{n}: \text { 굥칭휨강도 } \\ \phi_{Q}: \text { 저항계수(축력) } \\ \phi_{b} \text { :저항계수(횜) } \end{gathered}$
$\begin{aligned} & \text { 구 } \\ & \text { 조 } \\ & \text { 요 } \\ & \text { 소 } \\ & \text { 계 } \end{aligned}$	국부좌굴	퓰랜지에 대해, $\frac{t_{w w} / 2}{t_{f}} \leq \frac{52}{\sqrt{F_{y}}}$ 웨브에 대해, $\frac{P_{u}}{\phi P_{y}} \leq 0.125$ 인 경우. $\frac{h_{w}}{t_{w}} \leq \frac{520}{\sqrt{F_{y}}}\left(1-\frac{1.54 P_{u}}{\phi_{b} P_{y}}\right)$ $\frac{P_{u}}{\phi P_{y}}>0.125$ 인 경우, $\frac{h_{w}}{t_{w}} \leq \frac{191}{\sqrt{F_{y}}}\left(2.33-\frac{P_{u}}{\phi_{b} P_{y}}\right) \geq \frac{253}{F_{y}}$	F_{y} :항복강도 P_{y} :공칭항복강도

표 3. 강종에 따른 회귀분석식 (W형 강재)

	$A-I$	$S-I$,
W10	$A=0.51477+0.05425 I-1.25714 \times 10^{-5} I^{2}$	$S=-1.31244+0.21777 I-5.65356 \times 10^{-5} I^{2}$	99.5%
W12	$A=1.6008+0.03341 I-2.39701 \times 10^{-6} I^{2}$	$S=4.07642+0.15677 I-9.90386 \times 10^{-6} I^{2}$	99.9%
W14	$A=5.40646+0.02133 I-4.57087 \times 10^{-7} I^{2}$	$S=21.58173+0.11899 I-2.15776 \times 10^{-6} I^{2}$	99.8%
W16	$A=1.73336+0.02028 I-1.17255 \times 10^{-6} I^{2}$	$S=0.22799+0.12803 I-7.02749 \times 10^{-6} I^{2}$	99.9%
W18	$A=2.80811+0.01536 I-3.78433 \times 10^{-7} I^{2}$	$S=4.4422+0.10869 I-2.88709 \times 10^{-6} I^{2}$	99.9%

제약조건의 계산을 위해서 단면적 (A) 과 단면계수 (S) 가 필요 하다. 따라서 단면 2 차 모멘트 (I) 와 단면적 (A), 단면계수 (S) 의 함수관계를 유도함으로써 근사적인 계산을 수행하였다. 그 러나 AISC W헝 강재제원표의 모든 표준단면을 하나의 관계 식으로 나타낼 경우 상관도가 매우 낮은 회귀분석이 이루어 지므로 상관도를 높이기 위하여 각각의 복부 높이에 따른 관 계식을 유도하였으며 그림 2,3 과 표 3 에서 보는 바와 같이 상관관계가 매우 높은 2 차 다항식의 관계식을 구하였다.

그림 2. W형 강재(AISC)에 따론 A 와 의 상관관계

그림 3. W형 강재(AISC)에 따른 S 와 1 의 상관관계

3. 다단계 다목적 최적설계 알고리즘

3.1 전체 구조계의 최적화

뼈대구조물에 대한 기존의 다단계 알고리즘은 수치해를 적 용하는 과정에서 설계 민감도분석에 의한 근사 재해석 기법

을 사용하지 않으므로 엄청나게 많은 실 구조해석을 필요로 한다. 따라서 대형 구조물에 적용했을 때 만족할만한 효율성 을 기대할 수 없었다. 이러한 문제점을 개선하기 위해 그림 4 와 같은 흐름을 가지는 효율적인 다단계 알고리즘을 적용하 였으며, 수렴성 향상을 위해 중간매개변수에 대한 진동수와 모멘트 같은 구조응답의 근사재해석을 최적화과정에 적용하 였다. 비선형 제약조전을 포함하는 뼈대구조에 대한 효율적인 최적화 기법을 찾기 위해 국부최적화기법들로 구성된 ADS (Automated Design Synthesis)21)를 이용하여 가능한 기법들을 본 논문에서 사용된 예제에 적용하여 효율성과 신 뢰성들 비교 검토한 결과 MMFD(Modified Method of Feasible Direction)이 대부분의 경우에 대해 가장 합리적 인 해를 제공해 주었기 때문에, 본 논문에서 이 방법을 전체 구조계 최적화문제에 대한 기본적인 최적화기법으로 사용하 였다.

그립 4. 다목적 최적설계 알고리줌

본 논문에서 제안한 다목적 최적설계를 위한 개념적인 흐 름도는 그림 4 에 나타낸 바와 같고 최적화 과정을 요약하면 다음과 같다.

1 단계 : 강재중량, 변헝에너지 그리고 안정성에 대한 이상 적인 목적함수를 구하기 위하여 각각의 목적함수 를 단일목적함수로 하여 최적화를 수행한다.
2 단계 : 전체 구조계에 대한 최적화를 수행한다.
3 단계 : 구조 요소계에 대한 최적화를 수행한다.
4단계 : 최적설계결과가 수럼하면 종료하고 그렇지 않으면 2 단계로 돌아간다.

3.2 구조 요소계의 최적화

구조 요소계에서는 유전자 알고리즘을 이용한 이산형 최적 설계기법을 적용하였다. 이는 최적화과정에서 전체 구조해석 을 수행하지 않기 때문에, 유전자 알고리즘이 개체와 세대수 에 따른 많은 반복계산비용의 수반이라는 취약점을 배제할 수 있게 되었다. 유전자 알고리즘은 목적함수를 최소화하고 제약조건을 모두 만족시키는 단면을 탐색하는 최적화기법으 로 사용되었다. 유전자 알고리즘의 적용방법은 여러 논문에서 제시되고 있으나. 본 논문에서는 가장 기본적인 SGA (simple genetic algorithm)를 적용하였다. 유전자알고리 즘에서 교배방법은 일정교배법(uniform method)을 사용하 였으며, 교배확률은 0.5 , 돌연변이 확률은 0.05 , 번식방법은 elitism, 세대수는 30 세대, 개체수는 10 개체로 하여 수행하 였다. 적합도 함수와 벌칙함수는 식(7), (8)과 같다.

$$
\begin{align*}
& \text { Fitness Function }=\left(\sum_{i=1}^{n} \rho A_{i} h_{i}+P F\right)^{-1} \tag{7}\\
& P F=\text { Penalty Function }=\beta(\text { constraint }-1)^{n} \tag{8}
\end{align*}
$$

여기서. Fitness Function은 적합도 함수를 나타내며, β, η 는 가중계수로 각각 200 과 4 를 사용하였으며, Penalty Function 은 본 논문에서 구조 요소계에 적용된 모든 제약조건이 이에 해당된다.

3.3 구조응답 재해석

근사 재해석의 성능은 구조최적화 문제에서 대단히 중요하 다. 구조최적화문제의 효율성을 향상시키기 위한 많은 연구가 진행 중에 있는데, 이 중에서 고차미분을 수행하지 않으면서 비선형을 효과적으로 고려할 수 있는 방법은 설계변수가 실

제 단면제원일 경우 대부분 각각의 구조응답의 특성을 대표 하는 중간매개변수에 대한 함수를 근사화 하는 것이다. 본 논 문에서는 모든 구조웅답을 중간매개변수를 사용한 재해석1) 을 통하여 최적화의 성능을 향상시켰다.

가장 간단한 국부근사화 방법에는 함수값과 설계점에서의 기울기에 기초하는 목점함수와 제ㅇㅑㅑ조건에 대하여 선형근사 화하는 것이다. 여기서, 각각의 요소에 대한 구조응답벡터를 R 로 표시하였으며, 만약 X 가 n 개의 미지수에 대한 설계변수 의 벡터라고 한다면, R 는 다음과 같이 근사화할 수 있다.

$$
\begin{equation*}
R(X)=R\left(X_{0}\right)+\nabla R\left(X_{0}\right) \cdot \delta X \tag{9}
\end{equation*}
$$

여기서, $\delta X=X-X_{0} ; X_{0}$ 는 Taylor전개에서 설계변수 의 초기치이다. 그리고 ∇ 는 함수의 기울기를 나타낸다. 이 렇게 비선형함수를 선형근사화하여 얻은 값은 X_{0} 점 근처에 서는 비교적 정확한 값을 얻을 수 있으나. X_{o} 에서 멀리 떨어 진 X 에 대해서는 정확한 값을 얻기가 힘들다. 이러한 문제 를 해결하기 위하여 Taylor전개식에 고차항을 고려하면 더욱 정확한 근사화가 가능하지만 고차미분항을 계산해야 하므로 많은 계산비용이 소요된다. 따라서 근사함수의 거동을 더욱 선형적으로 만들어 줄 수 있는 중간매개변수를 찾는 것이 더 욱 효과적인 근사화방법이 될 것이다. 일반적으로 중간매개변 수 Y 는 설계변수 X 의 항으로 다음과 같이 정의할 수 있다.

$$
\begin{equation*}
Y=X^{\beta} \tag{10}
\end{equation*}
$$

여기서, Y 는 중간매개변수라 불리는 설계변수의 함수이다. 선형 근사화함수 $R(X)$ 를 다음과 같이 중간매개변수의 항으 로 표현하면 다음과 같다.

$$
\begin{equation*}
R(X)=R\left(X_{0}\right)+\nabla R\left(Y_{0}\right) \cdot \delta Y \tag{11}
\end{equation*}
$$

여기서, $Y_{0}=Y\left(X_{0}\right)$ 이고 $\delta Y=Y-Y_{0}$ 이다. 먼저 휨 모멘트와 고유 진동수와 같은 모든 구조응답은 각작의 구조 웅답 특성을 나타내는 중간매개변수의 항으로 근사화 할 수 있다. 따라서 지진하중에 대한 등가정적수평하중으로 인한 휨 모멘트는 중간매개변수를 $Y=X^{1 / 3}$ 을 사용함으로써 근사화 할 수 있다. 또한 구조물의 강성에 기초한 고유진동수는 중간 매개변수를 $Y=X^{1 / 2}$ 사용하여 보다 효과적인 근사화를 통한 재해석을 수행 할 수 있다.

4. 적용 예 및 고찰

4.1 일반사항

안정성을 고려한 다목적 최적설계의 합리성을 검증하기 위 하여 W형 단면을 가지는 8 층 강 뼈대구조물에 앞에서 기술 한 이론과 정식화를 기초로 최적설계를 수행하였으며, 대상구조 물의 일반사항과 초기 단면제원은 표 4에 나타낸 바와 같다.

4.2 결과 및 분석

본 논문에서 제안한 안정성을 고려한 목적함수의 정식화 방법의 합리성을 검증하기 위하여 3 가지 방법으로 목적함수 를 정식화하고 정식화 방법에 따른 설계성능을 비교하였다:
(1) 형식 1 은 강재중량만을 목적함수로 사용한 경우 (2) 형식 2 는 강재중량과 변형에너지를 다목적으로 사용한 경우 (3) 형식 3 은 강재중량과 변형에너지, 안정성을 목적함수로 사용한 경우이다. 표 5 에 각각의 정식화 방법에 따른 최적설 계 결과를 나타내었다.

표 5 에서 형식 2 의 정식화 방법에 의한 결과와 형식 1 의 정식화 방법에 의한 결과를 비교하면 강재중량은 형식 1 의 경우 9.678 kips 이고 형식 2 의 경우는 10.233 kips 로 나타 나 형식 2 에 의한 정식화 방법이 상대적으로 5.73% 중량의 증가를 보였다. 반면에 변형에너지는 형식 1 의 경우 $3.793 \mathrm{kip}-\mathrm{ft}$ 이고 형식 2 의 경우는 $3.913 \mathrm{kip-ft}$ 로 형식 2 의 정식화 방법이 상대적으로 에너지 홉수능력이 3.16% 우수한 것으로 나타났다. 그러나 그림 5 에 나타난 바와 같이 충별 안 정성 계수의 분포는 전체적으로 형식 1 과 형식 2 가 매우 유 사하며 안정성 계수가 가장 큰 1 층에서의 안정성 계수 또한 0.0221 과 0.0223 로 거의 같은 값을 갖는 것으로 나타나 목

그림 5. 안정성 계수 분포

그림 6. 강성 분포
적함수의 구성에 있어서 안정성을 고려하지 않아 안정성 계 수의 분포에는 거의 변화가 없음을 알 수 있다. 형식 3 의 정 식화 방법에 의한 결과와 형식 2 의 정식화 방법에 의한 결과 를 비교하면 강재중량은 형식 2 의 경우 10.233 kips 에서, 형

표 4. 대상구조물 일반사항

설계조건			$\begin{aligned} & \text { 층수 } \\ & \text { 층 높이 } \\ & \text { 층 질량 } \end{aligned}$		$\begin{aligned} & N=8 \\ & h_{i}=12 \mathrm{ft} \\ & m_{i}=1.8 \mathrm{kip} \cdot \mathrm{sec}^{2} / \mathrm{ft} \end{aligned}$			
재료			밀도 탄성계수 항복강도		$\begin{aligned} & \rho=0.49 \mathrm{kip} / \mathrm{ft}^{3} \\ & E=200,000 \mathrm{Mpa} \\ & F_{y}=248 \mathrm{Mpa}(36 \mathrm{ksi}) \end{aligned}$			
진동수 제한구역			$\left[\omega_{a}, \omega_{b}\right]=[10,15](\mathrm{rad} / \mathrm{sec})$					
초기값								
층	1	2	3	4	5	6	7	8
강종	W14×132	W14×132	W16×77	W16×77	W14×53	W14×53	W12 $\times 40$	W12 $\times 40$

표 5. 최적설계 결과

형식	흥	강종	I(in4)	치 수(in)				안정성	$\begin{gathered} \begin{array}{c} \text { 중량 } \\ \text { (kips) } \end{array} \\ \hline \end{gathered}$	변형에너지 (kip-ft)
				웨브 높이	$\frac{\text { 풀렌지 폭 }}{7}$	플랜지 두깨	웨브 두께	계수		
형식 1	1	W18×86	984	15.50	7.555	0.695	0.415	0.0221	9.678	3.793
	2	W18×55	890	15.50	7.530	0.630	0.399	0.0132		
	3	W18×55	890	15.50	7.530	0.630	0.390	0.0076		
	4	W18×50	800	15.50	7.495	0.570	0.355	0.0052		
중량	5	W18×46	712	15.50	6.060	0.605	0.360	0.0033		
	6	W18×46	712	15.50	6.060	0.605	0.360	0.0031		
	7	W18×46	712	15.50	6.060	0.605	0.360	0.0017		
	8	W18×45	586	13.63	7.035	0.565	0.345	0.0008		
형식 2 중량 변형에너지	1	W18×86	984	15.50	7.555	0.695	0.480	0.0223	10.233	3.913
	2	W18×55	890	15.50	7.530	0.630	0.450	0.0148		
	3	W18×60	984	15.50	7.555	0.695	0.415	0.0074		
	4	W18×50	800	15.50	7.495	0.570	0.495	0.0053		
		W18×55	890	15.50	7.530	0.630	0.390	0.0024		
	6	W18×46	712	15.50	6.060	0.605	0.355	0.0031		
	7	W18×55	890	15.50	7.530	0.630	0.355	0.0016		
	8	W18×45	586	13.63	7.035	0.565	0.390	0.0010		
형식 3	1	W18×86	1530	15.50	11.90	0.770	0.480	0.0124	11.209	3.651
	2	W18×65	1070	15.50	7.590	0.750	0.450	0.0090		
	3	W18×60	984	15.50	7.555	0.695	0.415	0.0072		
중량 변형에너지 안정성	4	W18×71	1170	15.50	7.635	0.810	0.495	0.0034		
	5	W18×55	890	15.50	7.530	0.630	0.390	0.0029		
	6	W18×50	800	15.50	7.495	0.570	0.355	0.0026		
	7	W18×50	800	15.50	7.495	0.570	0.355	0.0015		
	8	W18×55	890	15.50	7.530	0.630	0.390	0.0004		

식 3 의 경우 11.209 kips 로 증가하여 중량이 9.54% 증가한 반면에, 변형에너지는 $3.913 \mathrm{kip}-\mathrm{ft}$ 에서 $3.651 \mathrm{kip}-\mathrm{ft}$ 로 감소 하여 상대적으로 에너지 홉수능력이 6.70% 감소하였다. 그 러나 그림 5 에 나타낸 바와 같이 형식 2 의 경우 안정성 계수 의 분포가 상부 층에서 하부 층으로 내려감에 따라 급격히 감소하는 경향을 나타냈으나 형식 3 의 경우 안정성 계수의 감소가 매우 둔화된 경향을 나타냈다. 특히 안정성 계수가 가 장 크게 나타나는 1충 요소의 안정성 계수는 형식 2 의 경우 0.0223 였으나 형식 3 의 경우 0.0114 로 감소하여 형식 3 의 정식화 방법이 형식 2 의 경우보다 상대적으로 48.88% 안정 한 설계결과를 나타냈다. 즉. 강재중량. 변형에너지와 함께 안정성을 고려한 최적설계를 수행함으로써 안정성을 고려하 지 않은 경우보다 상대적으로 강재중량의 증가와 변형에너지 가 감소되는 결과가 나타났지만 상대적으로 안정성 측면에서 매우 우수한 설계결과를 얻을 수 있다. 그림 6에 나타낸 강 성의 분포에서 알 수 있듯이 안정성을 고려하지 않은 형식 1,2 의 강성분포와 비교하여 안정성을 고려한 형식 3 의 강성 분포는 전체적인 구조물의 안정성을 확보하기 위하여 하부충 에 대한 강성을 증대시키는 것이 바람직하다는 설계지침을 제시하고 있는 것으로 볼 수 있다.

5. 결론

본 논문에서는 지진하중을 받는 강뼈대구조물에 대하여 표 준단면을 이용한 다목적 최적설계 정식화 방법을 제안하고, 적용예제를 통하여 제안한 정식화 방법의 합리성을 검증하였 다. 이에 대한 결론은 다음과 같다.
(1) 표준단면에 대한 다목적 최적설계를 수행함에 있어서 기존의 Pareto 형식의 문제 해결방법이 갖는 의사결 정의 문제를 해결하기 위하여 본 논문에서 이용한 전 역기준법은 표준단면을 이용한 이산형 변수의 다목적 최적설계 문제를 해결하는데 있어 합리적인 방법이다.
(2) 지진하중을 받는 강빼대구조물의 다목적 최적설계 문 제의 정식화 과정에서 강재중량과 변형에너지 뿐만 아 니라 강구조물의 중요한 성능기준인 안정성을 고려함 으로써 강재중량과 변형에너지에 대한 설계성능을 유 지하면서 안정성이 항상된 설계결과를 얻을 수 있어 전체적으로 설계성능을 향상시킬 수 있다.
(3) 뼈대구조물을 설계하는데 있어 상부층보다는 하부충이 안정성에 대하여 지배적이므로 하부층에 대한 안정성 검토가 필요하다.
(4) 본 논문에서 제안한 지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계 방법은 실제적인 대 형 강뼈대구조물의 설계에 적용하면 매우 합리적인 설 계를 수행할 수 있는 방법이다.

참 고 문 헌

1. 조효념, 정지숭, 민대홍, 이광민, "자돔미분을 이용한 빼 대구조의 다단계 최적설계", 강구조학회 논문집, 2000 , Vol12, No 6
2. AISC., Load and Resistance Factor Design Manual of steel construction. American Institute of Steel Construction, Chicago, 1994, p. 1-26~1-43
3. AISC., Load and resistance factor design specification for structural steel buildings, American Institute of Steel Construction, Chicago, 1993
4. AISC., Seismic provisions for structural steel buildings, American Institute of Steel Construction, Chicago, 1992
5. Berz, M., Computational differentiation techniques, tools, and applications, Society for Industrial and Applied Mathmatics. Philadelphia. 1996
6. Bichof, C., ADIFOR-generating derivative codes from FORTRAN 77 programs. Scientific Programming, 1992
7. Bischof, C., The ADIFOR2.0 system for the automatic differentiation of FORTRAN 77 programs, IEEE Computational Sci. \& Eng., 3(3), 1996, p. 18-32
8. Chattopadhyay, A., "Multilevel decom- position procedure for efficient design optimization of helicopter rotor blades," AIAA Journal Vol.33, 1995, pp.223~230
9. Chattopadhyay, A., Pagaldipti, N., "A multidisciplinary optimization using semianalytical sensitivity analysis procedure and multilevel decomposition," Computers Math \& Applic, Vol.29, 1995, pp.55~66
10. El-Beltagy, M. A. and Keane, A. J., "A comparison of various optimization algorithms on a multilevel problem", Artificial Intelligence. 12, 1999, pp.639~654
11. Gang, L., Multi-objective and multi-level optimization for steel frames . Engineering Structures, 21, 1999, pp.519~529
12. Ghasemi, M. R. . "Optimization of trusses using genetic algorithms for discrete and continuous variables", Engineering Computations, 16, 1999, pp.272~301
13. Goldberg, D.E., Computer-Aided Gas pi-peline using Genetic Algorithm and Rule Learning, Ph.D. thesis, Dept. Civil Eng., Univ. Michigan., 1983.
14. Griewank, A., and Corliss, G. F., Automatic differentiation of algorithms : thoery, implementation. and application. Society of Industrial and Applied Mathematics, Philadelphia, Pa. 1991
15. Huang, M. W., Optimal design of steel structures using standard sections. Structural Optimization,
16. Ip. W. H., "Multi-product planning and scheduling using genetic algorithm approach", Computers \& Industrial Engineering, 38, 2000, pp.283~296
17. Kirsch, U., "Multilevel approach to optimum structural design," ASCE Journal of the Structural Division, Vol.101, 1975, pp.957~974
18. Rao, S. S. (1996). Engineering Optimization: Theory and Practice. Wiley Interscience
19. Sobieszczanski-Sobieski, J., "Structural optimization by multilevel decomposition." AIAA Journal, Vol.23, 1985, pp. 1775~1782
20. Uniform Building Code Standards, International Conference of Building Official, 1994
21. Vanderplaats. G. N., ASD: A FORTRAN Program for Automated Design Synthesis, Engineering Design Optimization, Inc, Santa Barbara, 1985
(접수일자 : 2002년 8월 21일)

[^0]: 1)정회원, 한양대학교 토목- 환경공학과 교수
 2)정회원. 안산공과대학 토목과 겸임전임강사
 3)정회원. 한앙대학교 토목-환경공학과 석사과정

[^1]: lin. $=2.54 \mathrm{~cm}$

