DOI QR코드

DOI QR Code

Malonate Metabolism: Biochemistry, Molecular Biology, Physiology, and Industrial Application

  • Kim, Yu-Sam (Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University)
  • Published : 2002.09.30

Abstract

Malonate is a three-carbon dicarboxylic acid. It is well known as a competitive inhibitor of succinate dehydrogenase. It occurs naturally in biological systems, such as legumes and developing rat brains, which indicates that it may play an important role in symbiotic nitrogen metabolism and brain development. Recently, enzymes that are related to malonate metabolism were discovered and characterized. The genes that encode the enzymes were isolated, and the regulation of their expression was also studied. The mutant bacteria, in which the malonate-metabolizing gene was deleted, lost its primary function, symbiosis, between Rhizobium leguminosarium bv trifolii and clover. This suggests that malonate metabolism is essential in symbiotic nitrogen metabolism, at least in clover nodules. In addition to these, the genes matB and matC have been successfully used for generation of the industrial strain of Streptomyces for the production of antibiotics.

Keywords

References

  1. An, J. H. and Kim Y. S. (1998) A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB), and a putative dicarboxylate carrier protein (MatC) in Rhizobium trlfolii: Cloning, sequencing, and expression of the enzymes in Escherichia coli. Eur. J. Biochem. 257, 395-402. https://doi.org/10.1046/j.1432-1327.1998.2570395.x
  2. An, J. H., Lee, G. Y., lung, J. W., Lee, W. and Kim, Y. S. (1999) Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii. Biochem. J. 344, 159-166. https://doi.org/10.1042/0264-6021:3440159
  3. An, J. H., Lee, G. Y., Song, J. H., Lee, D. W. and Kim, Y. S. (1999) Properties of malonyl-CoA decarboxylase from Rhizobium trifolii. J. Biochem. Mol. Biol. 32, 414-418.
  4. Bentley, L. E. (1952) Occurrence of malonic acid in plant, Nature 170, 847-848.
  5. Berg, M., Hilbi, H. and Dirnroth, P. (1997) Sequence of a gene cluster from Malonomonas rubra encoding components of the malonate decarboxylase Na+ pump and evidence for their function. Eur. J. Biochemistry 245, 103-115. https://doi.org/10.1111/j.1432-1033.1997.00103.x
  6. Berg, M., Hilbi, H. and Dimroth, P. (1996) The acyl carrier protein of malonate decarboxylase of malonomonas rubra contains 2' -(5"-phophoribosyi)-3' -dephosphocoenzyme $\AA$ as a prosthetic group. Biochemistry 35, 4689-4696
  7. Byun, H. S. and Kim. Y. S. (l997a) CoA transferase and malonyl-CoA decarboxylase activity of malonate decarboxylase from Acinetubacter mlcoaceticus. J. Biochem. Mol. Biol. 30, 246- 252.
  8. Byun, H. S. and Kim, Y. S. (1997b) Subunit organization of bacterial malonate decarboxylase: the smallest subunit as an acyl-carrier protein. J. Biochem. Mol. Biol. 30, 132-137.
  9. Byun, H. S. and Kim, Y. S. (1994) Assays for malonate decarboxylase. Anal. Biochem. (USA) 223, 168-170. https://doi.org/10.1006/abio.1994.1566
  10. Chohnan, S., Fujin, T., Takaki. T., Yonekura, M., Nishihara, H. and Takamura, Y. (1998) Malonate decarboxylase of Pseudomonas putida is composed of tive subunits. FEMS Microbiol. Lett. 169, 37-43. https://doi.org/10.1111/j.1574-6968.1998.tb13296.x
  11. Chohnan, S., Kurusu, Y., Nishihara, H. and Takamura, Y. (1999) Cloning and characterization of mdc genes encoding malonate decarboxylase fmm Pseudomonas putida. FEMS Microbiol. Lett. 174, 311-319. https://doi.org/10.1111/j.1574-6968.1999.tb13584.x
  12. Hayaishi, O. and Komberg, A. (1952) Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J. Biol. Chem. 197, 717-732.
  13. Handa, S., Koo, J. H., Kim, Y. S. and Floss, H. G. (1999) Stereochemical course of biotin-independent malonate decarboxylase catalysis. Arch. Biochem. Biophys. 370, 93-96. https://doi.org/10.1006/abbi.1999.1369
  14. Hoenke, S., Schmid, M. and Dimroth, P. (1997) Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur. J. Biochem. 246, 530-538. https://doi.org/10.1111/j.1432-1033.1997.00530.x
  15. Hoenke, S., Wild, M. R. and Dimroth, P. (2000) Biosynthesis of triphosphoribosyl-dephospho-coenzyme $\AA$, the precursor of the prosthetic group of malonate decarboxylase. Biochemistry 39, 13223-132232. https://doi.org/10.1021/bi0011532
  16. Jung, J. W., An, J. H., Na, K. B., Kim, Y. S. and Lee, W. (2000) Active site and substrate binding mode of malonyl-CoA synthetase determined by transferred nuclear overhauser effect spectroscopy, site-directed mutagenesis and comparative modeling studies. Protein Sci. 9, 1294-1303 https://doi.org/10.1110/ps.9.7.1294
  17. Kang, S. W., Hong, S. Y., Ryoo, H. D., Rhyu, G. I. and Kim, Y. S. (1994) Kinetics of malonyl-CoA synthetase from Rhizobium trifolii and evidences for malonyl-AMP formation as, a reaction intennediate. Bull. Korean Chem. Soc. 15. 394-399.
  18. Kang. S. W. and Kim, Y. S. (1996) Identification of Bradyrhizobium japonicwn malonamidase E2 in the periplasmic space of soybean nodule bacteroids. J. Plant Physiol. 149, 290-294. https://doi.org/10.1016/S0176-1617(96)80123-4
  19. Kim. Y. S. and Byun, H. S. (1994) Purification and properties of a novel type of malonate decarboxylase from Acinetobacter calcoaceticus. J. Biol. Chem. 269, 29636-19641.
  20. Kim. Y. S. and Kang, S. W. (1994) Novel malonamidases in Bradyrhizobium japonicum. J. Biol. Chem. 269, 8014- 8021.
  21. Kim. Y. S. and Kang, S. W. (1994) Steady state kinetics and evidences for malonyl-AMP fonnation in the catalysis of Bradyrhizobium japonicum malonyl-CoA synthetase. Biochem. J. 297, 327-333. https://doi.org/10.1042/bj2970327
  22. Kim. Y. S., Kwon, S. J. and Kang, S. W. (1993) Malonyl-CoA synthetase from Rhizobium trifolii: Purification, properties, and the immunological comparison with those from Bradyrhizobium japonicum and Pseudomonas fluorescens. Korean Biochem. J. 26. 176-183.
  23. Kim. Y. S., Park. J. W. and Kang, S. W. (1992) Isolation of a novel malonamidase from radyrhizobium japonicum. Korean Biochem. J. 25, 709-716.
  24. Kim. Y. S. and Chae, H. Z. (1990) Purification and properties of malonyl-CoA synthetase from Rhizobium japonicum. Biochem. J. 273,511-516.
  25. Kim. Y. S., Chae, H. Z., Lee, E. and Kim, Y. S. (1990) Identification of malonate-specific enzymes. malonyl-CoA synthetase and malonamidase, in Rhizobium. Korean J. Microbiol. 29, 40- 48.
  26. Kim, Y. S. and Chae. H. Z. (1990) A model of nitrogen flow by malonamate in the Rhizobi um japonicum-soybean symbiosis. Biochem. Biophvs. Res. Comm. 169, 692-699. https://doi.org/10.1016/0006-291X(90)90386-2
  27. Koeppen, A. H., Mitzen, A. A. and Ammoumi, A. A. (1974) Malonate metabolism in rat brain. Biochem. 13. 3589-3595. https://doi.org/10.1021/bi00714a029
  28. Koeppen, A. H., Mitzen, E. J. and Papandrea, J. D. (1978) Metabolism of malonic acid in rat brain after intracerebrial injection. J. Neurochem. 31, 739-745. https://doi.org/10.1111/j.1471-4159.1978.tb07849.x
  29. Koo. H. M., Choi. S. O., Kim. H. M. and Kim, Y. S. (2000) Identification of active site residues in Bradyrhizobium japonicum malonamidase E2. Biochem. J. 349, 501-507 https://doi.org/10.1042/0264-6021:3490501
  30. Koo, H. M. and Kim, Y. S. (2000) Identification of active site residues in Bradyrhizobium japonicum malonyl-CoA synthetase. Arch. Biochem. Biophys. 378, 167-174. https://doi.org/10.1006/abbi.2000.1813
  31. Koo, J. H., Cho, I. H. and Kim, Y. S. (2000) The malonate decarboxylase operon of Acilletobacter calcoaceticus KCCM 40902 is regulated by malonate and the transcriptional repressor MdcY. J. Bacteriol. 182, 6382-6390. https://doi.org/10.1128/JB.182.22.6382-6390.2000
  32. Koo, J. H. lung. S. B. Byun, H. S. and Kim. Y. S. (1997) Cloning and sequencing of genes encoding malonate decarboxylase in Acinetobacter calcoaceticus. Biochim. Biophys. Acta 1354, 49-54. https://doi.org/10.1016/S0167-4781(97)00134-6
  33. Koo, J. H. and Kim, Y. S. (1999) Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266. 1-9. https://doi.org/10.1046/j.1432-1327.1999.00822.x
  34. Lee. H. Y., An, J. H. and Kim, Y. S. (2000) Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifolii. Eur. J. Biochem. 267, 7224-7229. https://doi.org/10.1046/j.1432-1327.2000.01834.x
  35. Lee. H. Y. and Kim, Y. S. (2001) Identification of amino acid residues in the carboxyl tenninus required for malonate-responsive transcription regulation of MatR in Rhizobium leguminosarium bv. Trifolii. J. Biochem. Mol. Biol. 34, 305-309.
  36. Lee, H. Y., Na, K. B. and Kim, Y. S. (2001) Identification of active site residues in Bradyrhizobium japonicum acetyl-CoA synthetase. J. Biochem. 130, 807-813. https://doi.org/10.1093/oxfordjournals.jbchem.a003052
  37. Lee. S. C. and Kim. Y. S. (1993a) Evidence for one catalytically essential tryptophan residue at the CoA binding site of malonyl-CoA synthetase from Rhizobium trifolii. Korean Biochem. J. 26. 378-382.
  38. Lee. S. C. and Kim. Y. S. (1993b) Chemical modification of Rhizobium trifolii malonyl-CoA synthetase with pyridoxal-5'-phosphate. Korean Biochem. J. 26, 235-238.
  39. Lee. S. C. and Kim, Y. S. (1993c) Chemical modification of catalytically essential residue of Rhizobium trifolii malonyl-CoA synthetase. Korean Biochem. J. 26, 286-290.
  40. Li, J. and Copeland (2000) Role of malonate in chickpeas. Phytochem. 54. 585-589. https://doi.org/10.1016/S0031-9422(00)00162-X
  41. Lombo. F., Pfeifer. B., Leaf. T., Ou. S., Kim, Y. S., Cane, D. E., Licari. P. and Khosla. C. (2001) Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotech. Progress 17, 612-617. https://doi.org/10.1021/bp010045j
  42. Melior, R. B. (1989) Bacteroids in the Rhizobium-legume symbiosis inhabit a plant internal lytic compartment: implications for other microbial endosymbioses. J. Exp. Botan. 40. 831-839. https://doi.org/10.1093/jxb/40.8.831
  43. Mitzen. E. J., Ammoumi, A. A. and Koeppen, A. H. (1976) Developmental changes in malonate-related enzymes of rat brain. Arch. Biochem. Biophys. 175, 436-442. https://doi.org/10.1016/0003-9861(76)90531-2
  44. Pohl N. L., Ham,. M., Lee, H. Y., Kim, Y. S. and Khosla. C. (2001) Remarkably broad substrate tolerance of malonyl-CoA synthetase. an enzyme capable of intracellular synthesis of polyketite precursors. J. Am. Chem. Soc. 123, 5822-5823. https://doi.org/10.1021/ja0028368
  45. Reibach. P. H. and Streeter, J. G. (1984) Evaluation of active versus passive uptake of metabolites by Rhizobium japonicum bacteroids. J. Bacteriol. 159, 47-52.
  46. Schmid. M., Berg. M., Hilbi. H. and Dimroth. P. (1996) Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme $\AA$-like prosthetic group. Eur. J. Biochem. 237. 221-228. https://doi.org/10.1111/j.1432-1033.1996.0221n.x
  47. Shin, S., Lee. T. H., Koo, H. M., Kim. S., Lee, H. S. Kim, Y. S. and Oh, B. H. (2002) Crystallization and preliminary X-ray crystallographic anlysis of malonamidase E2, an amidase signature family member. Acta Cryst. D58, 562-563.
  48. Shin, S., Lee, T. H., Ha. N. C., Koo, H. M., Kim. S., Lee. H. S., Kim. Y. S. and Oh. B. H. (2002) Structure of malonamidase E2 reveals a novel ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. EMBO J. 21, 2509-2516. https://doi.org/10.1093/emboj/21.11.2509
  49. Streeter. J. G. (1991) Transport and metabolism of carbon and nitrogen in legume nodules. Adv. Batan. Res. 18, 129-187. https://doi.org/10.1016/S0065-2296(08)60022-1
  50. Stumpf. D. K. and Burris, R. H. (1981a) Organic acid content of soybean: age and source of nitrogen. Plant Physiol, 68, 989-991. https://doi.org/10.1104/pp.68.5.989
  51. Stumpf. D. K. and Burris. R. H. (1981b) Biosynthesis of malonate in roots of soybean seedlings. Plant Physiol. 68, 992-995. https://doi.org/10.1104/pp.68.5.992
  52. Vance, C. P., Johnson. L. E. B. and Hardarson. G. (1980) Histological comparison of plant and Rhizobium induced infective nodules in alfalfa. Physiol. Plant Pathol. 17. 259-268. https://doi.org/10.1016/S0048-4059(80)80019-1

Cited by

  1. Quantitative NMR Metabolite Profiling of Methicillin-Resistant and Methicillin-SusceptibleStaphylococcus aureusDiscriminates between Biofilm and Planktonic Phenotypes vol.13, pp.6, 2014, https://doi.org/10.1021/pr500120c
  2. Phosphorus deficiency does not enhance proton release by roots of soybean [Glycine max (L.) Murr.] vol.67, pp.1, 2009, https://doi.org/10.1016/j.envexpbot.2009.04.004
  3. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription vol.102, pp.1, 2005, https://doi.org/10.1073/pnas.0408487101
  4. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel vol.1827, pp.5, 2013, https://doi.org/10.1016/j.bbabio.2012.12.007
  5. Thermal and dielectric properties of gel-grown cobalt malonate dihydrate single crystals vol.83, pp.3, 2011, https://doi.org/10.1088/0031-8949/83/03/035801
  6. Analysis of metabolic variations throughout growth and development of adventitious roots in Silybum marianum L. (Milk thistle), a medicinal plant vol.123, pp.3, 2015, https://doi.org/10.1007/s11240-015-0854-8
  7. Using cytochomec to monitor electron transport and inhibition in beef heart submitochondrial particles vol.32, pp.1, 2004, https://doi.org/10.1002/bmb.2004.494032010306
  8. Metabolic engineering of carbon and redox flow in the production of small organic acids vol.42, pp.3, 2015, https://doi.org/10.1007/s10295-014-1560-y
  9. Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance (1H NMR) based metabolomics 2011, https://doi.org/10.1016/j.etap.2011.05.006
  10. Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. vol.39, pp.9, 2007, https://doi.org/10.1016/j.soilbio.2007.03.014
  11. Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae) vol.170, pp.3, 2006, https://doi.org/10.1111/j.1469-8137.2006.01697.x
  12. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea vol.35, pp.1, 2011, https://doi.org/10.1111/j.1574-6976.2010.00236.x
  13. “Malonate Uptake and Metabolism in Saccharomyces cerevisiae” vol.171, pp.1, 2013, https://doi.org/10.1007/s12010-013-0334-8
  14. A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation vol.373, pp.2, 2008, https://doi.org/10.1016/j.ab.2007.09.009
  15. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants vol.7, 2016, https://doi.org/10.3389/fpls.2016.01042
  16. Characterization of novel astragaloside malonates from Radix Astragali by HPLC with ESI quadrupole TOF MS vol.33, pp.4-5, 2010, https://doi.org/10.1002/jssc.200900687
  17. Toxicological Effects Induced by Cadmium in Gills of Manila Clam Ruditapes philippinarum Using NMR-Based Metabolomics vol.39, pp.11, 2011, https://doi.org/10.1002/clen.201100208
  18. Biosynthesis of polyketide synthase extender units vol.26, pp.1, 2009, https://doi.org/10.1039/B801658P
  19. Effects of structural analogues of the substrate and allosteric regulator of the human mitochondrial NAD(P)+-dependent malic enzyme vol.17, pp.15, 2009, https://doi.org/10.1016/j.bmc.2009.06.052
  20. Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations vol.7, pp.3, 2011, https://doi.org/10.1039/C0MB00143K
  21. Natural deep eutectic solvents: cytotoxic profile vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2575-9
  22. Paraburkholderia phytofirmans PsJN-Plants Interaction: From Perception to the Induced Mechanisms vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02093