곡선교의 받침특성에 따른 주행차량하중분배 특성분석

Analysis of Moving Vehicle Load Distribution of Curved Steel Box Girder Bridges considering Various Support Conditions

김 상 효1) - 이 용 선2) - 조 광 일3)
Kim, Sang Hyo • Lee, Yong Seon • Cho, Kwang Yil

요 약 : 본 연구에서는 곡선교에서 주행차량에 의한 동적웅답을 보다 정밀하게 구현할 수 있는 3 차원 해석모형을 개발하였다. 원심력에 의한 차량의 롤링운동에 따른 차량의 쏠림헌상을 구현하여 곡선교의 대표적인 응답특성인 편경사와 곡률반경에 따른 동적응답과 받침의 변화 에 따른 동적응답 특성을 규명하였으며, 2 가지 지점조건에 대하여 주행차량에 의한 곡선교의 동적특성을 비교•분석하였다. 또한 이와 함께 곡선교에서 어떤 파라미터가 하중분배에 가장 효율적인가를 비교•분석하였다. 동적해석결과 받침이 외측에 배치된 경우가 중앙에 배치된 경 우보다 더 유리하게 분석되었으며. 여러 가지 조건에 따라 하중분배 특성이 다르게 나타남을 알 수 있었다.
ABSTRACT : A 3-D numerical model, which could demonstrate the static and dynamic responses of a curved bridge more precisely with the moving vehicles, was developed The dynamic response induced by the centrifugal rolling motion of vehicle was identified according to the variations of the partial grade and the curvature of the slab. Dynamic characteristics of the curved bridge with the moving vehicle were analyzed under the condition of support types and two different support systems. Parametric studies were conducted to compare the efficiency of load distribution in the curved bridge. In general, while the vehicle was crossing the curved bridge, negative reaction occurred in the inside of the girder. The final result showed that the support system located outside the girder was more advantageous than other systems. and the characteristics of load distributions differed from the others in the various conditions of support systems.

핵 심 용 어 : 곡선교, 주행차량, 원심력, 롤링운동, 교량차량 상호작용, 받침배치, 부반력, 곡률반경. 편경사
KEWORDS : Curved Bridge, Moving Vehicle, Centrifugal Force, Rolling Effect, Bridge-vehicle Interaction, Shoe Arrangement, Upward Reaction, Radius of Curvature, Superelevation

1. 서 론

항공교통이나 고속철도의 건설이 생활권을 반일생활권으로 만드는데 큰 공헌을 했지만 여전히 도로의 중요성은 매우 크 며, 증가하는 교통량을 수용하기 위해서는 많은 도로의 신설 이 필요한 실정이다. 이러한 요구에 의한 도로의 증가로 도 로가 점점 복잡해지고 입체교차로가 많아지면서 곡선교 건설 의 필요성이 증대되고 있다. 곡선교는 가설지역의 입지조건이 나 교통의 원활한 흐름을 위해서 필요할 뿐만 아니라 미적으 로도 매우 우수하며 경제적인 장점도 있다. 하지만 이러한 장

[^0]점에도 불구하고 복잡한 거동과 그에 대한 정보의 부족으로 곡선교를 설계하고 시공하는데 어려움을 겪고 있다.

곡선교에 대한 연구(1)(2)는 Vlasov의 이론 이후 많은 발 전을 거듭하여 비선형 해석 등 많은 연구가 발표되었다. Kou와 You는 곡선교의 자유진동해석에 관하여 연구하였고. Huang등은 강판형 곡선교를 곡선보요소와 직선보요소를 이 용하여 2차원으로 모형화하고 차량은 3축 트랙터-트레일러를 11 자유도로 모형화하여 동적거동을 연구하였다.

곡선교는 초기곡률을 가지고 있기 때문에 직선교와는 달리 복잡한 거동을 보인다. 곡선교에는 주행차량에 의한 원심하중

본 논문에 대한 토의를 2003 년 6 월 30 일까지 학회로 보내주시면 토의 회답을 게재하겠습니다.

이 작용하고, 기하학적형상이 복잡하기 때문에 해석상에 어려 움이 따른다. 또한 곡선교는 직선교와 달리 내측지점에 부반 력이 발생할 수 있으므로 이에 대한 검토가 필요하며, 지점조 건에 따라 동적거동이 달라질 수 있다.

따라서 본 연구에서는 원심력에 의한 차량의 롤링운동에 따른 윤하중의 쏠림현상을 정확히 반영할 수 있는 해석프로 그램을 개발하고 교랑을 3 차원으로 모형화하여 지점조건을 중심으로 주행차량에 의한 곡선교의 동적특성을 분석하고자 한다. 이를 위해 곡선교의 받침 설치조건에 대하여 차량의 롤 링운동과 교량의 편경사, 곡률반경, 받침 종류 등의 변화에 따른 응답을 비교- 분석하고자 한다.

2. 정•동적거동분석을 위한 모형화

2.1 대상교량의 제원

본 연구의 기본 교량은 지간장 50 m , 곡륩반경 150 m 의 단순 곡선교로서 대상교령의 평면도와 단면도는 그림 1 과 같다. 대상 교량은 2 주형 강박스거더 곡선교로서 점선은 강박스거더와 가로 보를 나ㅌㅏㅐㅐㄴㄷㅏ. 대상교량의 교폭은 7.6 m , 강박스거더의 높이는 2.5 m , 폭 1.8 m 이며 플랜지와 복부편의 두깨는 12 mm 이매, 대 상교량은 전지잔에 걸쳐 동일한 단면을 가지는 것으로 하였다. 대상교량은 편경사를 가지고 있으며, 편경사의 정도에 마른 민감 도 분석을 위하여 $0 \% \sim 8 \%$ 범위의 편경사를 가정하였다.

그림 1. 대상교량

2.2 대상교량의 모형화

대상교랑은 3 차원 뼈대요소를 이용하여 그림 2 와 같이 직

선의 프레임요소들을 곡선으로 연결하여 절점에서 강결된 격 자로 모형화하였다(3). 뼈대요소법은 교량의 상판을 보로 구 성하여 격자구조로 나타낼 수 있고, 상판의 형태에 대해서도 제한이 없어 사교나 곡선교, 또는 불규칙한 교량에도 쉽게 적 용할 수 있고, 구조물의 절점에서 임의의 구속이 가능하므로 고정지지, 탄성지지 등 모든 형태의 지지조건을 표현할 수 있 다. 몇몇 해석프로그램에서는 곡선보요소를 사용하고 있으나. 직선요소를 사용하는 경우에도 하중분배가 잘 되도록 부재길 이를 정하면 실제 곡선보의 거동과 별 차이가 없다.

교량의 질량은 일관성질량으로 모형화하였으며, 교량 감쇠 행렬의 구성에는 점성감쇠(Rayleigh damping or viscous damping)를 사용하였고, 일반적인 강교량의 감쇠특성을 고 려하여 감쇠비는 2.0% 로 하였다.

그림 2. 대상교량에 대한 3차원 뼈대요소 모형

그립 3. 대상교량에 대한 쉘-솔리드요소 모형

표 1. 각 모형별 고유진동수 및 처짐값 비교

모형 종류	고유진동수 (Hz)					처짐 (m)
	1모드	2모드	3 3모드	4모드	5모드	지간중앙 외측거더
뼈대요소	2.17	3.93	7.93	8.21	11.62	0.070
엘+솔리드요소	2.16	3.79	6.93	7.83	10.20	0.072

2.3 대상교량의 모형화 검증

본 연구에서는 대상교량을 그림 2 와 같이 직선의 3 차원 뼈대요소를 사용하였는데, 하중분배가 잘 되도록 부재길이를 정하여 절점에서의 부재각이 5° 를 넘지 않도록 하면 실제 곡선보의 거동과 별 차이가 없다. 이러한 모형화 방법을 검증

하기 위하여 상용프로그램인 LUSAS를 이용하여 강박스 구 조물에는 쉘요소를 적용하고 상부구조물에는 솔리드 요소를 적용하여 그림 3 과 같이 모형화한 후 고유진동수 및 사하중 에 의해 발생하는 처짐과 반력에 대하여 비교하였다.

표 1 의 각 모형별 고유진동수 및 사하중에 의한 처짐값을 비교한 결과와 표 2~표 5 의 각 모형별 사하중에 의한 반력 값을 비교한 결과, 개발된 3 차원 뼈대요소모형의 타당성이 검증되었다고 판단된다. 그러나 표 2와 표 3 에서 알 수 있둣 이, 바닥판과 합성되지 않은 단계의 사하중에 의한 반력, 특 히 A2L에서의 교축방향 반력에서는 절대값은 크지 않으나 차이가 나타나고 있다. 반면에 합성된 단면에서의 결과(표 4)는 매우 근사한 경향을 보이고 있다. 표 2 등에서 사하중의 총합계에 다소 차이가 있는 것은 사용된 요소별로 자중 입력 방법이 다르기 때문에 나타나는 헌상이다.

표 2. 각 모형별 강박스에 의한 반력값 비교

$\begin{aligned} & \text { 모형 } \\ & \text { 종류 } \end{aligned}$	반력의 방향	(1) 강박스만에 의한 반력 (tonf)				
		A1L	A1R	A2L	A2R	합계
뼈대 요소	교축직각*	0.3	0.0	-0.2	0.0	
	교축**	0.0	0.0	3.6	-3.5	
	연직***	0.9	87.2	0.4	87.7	176.2
셸 + 솔리드 요소	교축직각*	0.002	0.0	-0.002	0.0	
	교축**	0.0	0.0	0.03	-0.03	
	연직***	1.3	88.9	1.3	89.0	180.5

[주] *: (+) 내측 \rightarrow 외측방향
: (+) 시점 \rightarrow 종점방향 *: $(+)$ 상향

표 3. 각 모형별 합성전 콘크리트 슬래브에 의한 반력

모형 종류	반력의 방향	(2) 콘크리트 슬래브에 의한 반력 (tonf)				
		AlL	A1R	A2L	A2R	합계
뼈대 요소	교축직가*	0.5	0.0	-0.4	0.0	
	교축**	0.0	0.0	6.6	-6.4	
	연직***	8.4	165	7.4	166	346.8
셸 + 솔리드 요소	교축직가*	0.004	0.0	-0.003	0.0	
	교축**	0.0	0.0	0.05	-0.05	
	연직**	4.3	169	4.2	169	346.5

표 4. 각 모형별 합성후 추가히중(방호벽 + 포장)에 의한 반력

$\begin{aligned} & \text { 모형 } \\ & \text { 종류 } \end{aligned}$	반력의 방향	(3) 방호벽+ 포장에 의한 반력 (tonf)				
		A1L	A1R	A2L	A2R	합계
뼈대 요소	교축직가*	1.5	0.0	-1.4	0.0	
	교축**	0.0	0.0	21.2	-20.6	
	연직***	3.1	68.7	-2.3	73.7	143.2
쉘 + 솔리드 요소	교축직각*	1.5	0.0	-1.4	0.0	
	교축**	0.0	0.0	21.0	-20.5	
	연직***	2.7	69.3	-2.3	74.1	143.8

일반적인 설계실무에서는 교량의 모형화에 있어서 2차원적 인 매우 단순화한 모형을 사용하기도 하는데 이 경우에는 지 점부에서의 부반력이 제대로 반영되지 않으며, 특히 지점부에 서의 수평반력은 거의 반영되지 않는다. 받침부의 거동을 반 영하는 프레임요소의 절점부로부터 단순히 강한 프레임요소 로 연결하는 일반적인 모형화 방법으로는 실제 박스거더에서 받침부에서의 변형이 구속되어 받침부에 매우 큰 수평반력이 발생되는 현상을 반영하지 못하기 때문이다.

한편, 받침에 교축방향의 유격이 존재하는 경우 유격의 영 향으로 수평반력이 감소되는 현상이 발생할 수 있으나, 실제 교량의 설계시 유격의 영향을 해석적으로 고려하여 설계한다 는 것은 안전촉이라 할수 없으므로 곡선교의 설계시에 받침 의 유격에 의한 영향은 무시하고 교축방향으로 발생하는 힘 에 대한 검토가 필요하다고 판단된다.

표 5. 각 모형별 전체 사하중에 의한 반력값 비교

$\begin{aligned} & \text { 모형 } \\ & \text { 종류 } \end{aligned}$	반력의 방향	전체 사하중(11) $+(2)+$ (3) $)$ 에 의한 반력 (tonf)				
		A1L	A1R	A2L	A2R	합계
$\begin{aligned} & \text { 뼈대 } \\ & \text { 요소 } \end{aligned}$	교축직각*	2.2	0.0	-2.1	0.0	
	교	0.0	0.0	31.4	-30.5	
	연직***	12.4	320.9	5.5	327.4	666.2
엘 + 솔리드 요소	교축직각*	1.50	0.00	-1.4	0.0	
	교축**	0.00	0.00	21.1	-20.6	
	연직***	8.34	327.2	3.2	332.1	670.8

2.4 받침의 모형화

교량이 구조물로 그 기능을 발휘하기 위해서는 상부구조가 하부구조에 의해 안전하게 지지되고 전체적인 구조계에 대해 설정되는 지지조건을 항상 유지할 수 있는 상 - 하부 연결구 조가 펼요하다. 받침은 이러한 조건을 만족시키는 기구로 교 량 상-하부구조의 절점에 설치되는 구조부재이며, 받침으로 써 요구되는 기본적인 기능은 하중전달기능, 수평이동기능, 회전기능 등이 있다.

사교 및 곡선교에서는 포트받침과 탄성받침이 자주 쓰이는 데, 곡선교에서는 받침부에 부반력이 발생하므로, 부반력용 받침은 그림 4 의 (a), (b)와 같이 포트받침이나 탄성받침에 부반력저항장치를 별도로 부착시킨다. 부반력용 탄성받침의 경우 상하부판과 탄성체를 볼트로 연결하지만 이것은 횡방향 변위에 의해 발생할 수 있는 받침의 분리에 저항하기 위해 사용하므로 부반력에 의한 수직강성에는 포함되지 않는 것이 타당하다. 따라서 부반력용 받침은 그림 5 와 같이 정반력에 저항하는 부분과 부반력에 저항하는 부분을 각각 다른 요소

로 모형화하였으며, 본 연구에서 사용한 탄성받침의 강성계산 식은 식(1)과 같다.

$$
\begin{equation*}
K_{V}=\frac{A \cdot E_{c}}{n \cdot t_{R}} \tag{1}
\end{equation*}
$$

여기서 A 는 고무 한 층의 지압면적, E_{c} 는 고무의 수직탄 성계수, t_{R} 은 고무 한 충의 두께, n 은 고무 층수이다.

그림 4. 부반력용 받침

그림 5. 부반력용 받침의 모형화

부반력용 받침은 부반력저항장치를 추가로 설치하여, 받침 부에 정반력이 작용하는 경우와 부반력이 작용하는 경우에 따라 저항하는 부재가 각작 다르므로, 일반적인 받침의 모형 화와 다른 해석 알고리즘을 갖는다.

본 연구의 해석 알고리즘을 살펴보면 구조물의 응답 해석

을 위해, 우선 구조물의 모형화를 퉁해 사하중만에 의한 받침 부의 반력을 계산해낸다. 그 다음 단계로, 앞서 구한 반력 값 을 개발된 프로그램에 입력하고, 계산 시간 간격마다 지점부 의 반력값을 구하여 이 값을 이미 입력된 사하중반력과 합산 하여 받침부의 반력을 다시 계산한다.
이 결과를 이용하여, 정반력이 발생할 경우에는 압축부재 만이 저항하고 인장부재는 null 요소로 적용된다. 부반력이 발생할 경우에는 인장부재만이 저항하고 압축부재는 null 요 소로 적용되어 전체 구조물의 강성이 결정된다. 즉, 압축 부 재로 정의된 요소는 받침부에 압축력이 작용하는 시간 간격 에서만 유효한 요소로서 작용하고, 인장 부재로 정의된 요소 는 받침부에 인장력이 작용하는 시간 간격에서만 유효한 요 소로서 작용하게 된다. 따라서, 차량의 주행에 따라 받침의 정반력 구간과 부반력 구간이 바뭡에 따라 교량 받침부의 거 동 및 교량 구조물 전체 거동 변화를 관찰할 수 있다.
이에 더하여 동적 해석에 있어서 저항하는 부재가 바묍에 따라 전체 구조물의 강성도 행렬이 변화하게 되므로 이에 의 한 구조물의 고유진동수의 변화를 다시 계산하여, 이 결과를 전체 구조물 응답 해석에 반영되도록 하였다. 또한, 부반력 저항부의 유격은 무시하여 안전측으로 해석하였다.

2.5 차량의 모형화

본 연구에서 적용한 차량은 대표적인 중차량인 5 축 세미트레일러로, 차량의 원심하중에 의한 차륜하중의 쏠림현상을 구현할 수 있도록 식(2)의 Lagrange 방정식을 사용하여 그 림 6 과 같은 13 자유도의 3 차원 주행차량모형을 사용하였다.

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{\partial T}{\partial \dot{q}_{i}}\right]+\frac{\partial V}{\partial q_{i}}+\frac{\partial C}{\partial \dot{q}_{i}}=P_{e x i} \tag{2}
\end{equation*}
$$

(a) 측면도

(b) 정면도

그림 6. 3차원 5축 세마트레일러의 모형

그림. 7 차량에 작용하는 외력

2.6 원심력의 모형화

곡선교를 주행하는 차량에는 원심력이 작용한다. 원심력에 의해 차량은 교량에 수평력을 작용시킬 뿐만 아니라 차량의 롤링운동에 의해 윤하중의 쏠림현상이 발생한다. 이러한 현상 은 수직 윤하중과 수평윤하중을 변화시켜 내측의 윤하중을 감소시키고 외측의 윤하중울 증가시킨다. 차량하중에 의한 곡 선교의 동적거동을 정확히 분석하기 위해서는 이러한 윤하중 의 쏠림현상이 고려되어야 한다. 그림 7 은 곡선교를 주행하 는 차량에 작용하는 외력을 나타낸다.

곡선주행하는 차량 각부의 질량중심에 작용하는 원심력 C_{i} 는 식(3)과 같이 나타낼 수 있다.

$$
\begin{equation*}
C_{i}=m_{i} \frac{v^{2}}{R} \tag{3}
\end{equation*}
$$

여기서, m_{i} 는 차량 각부의 질랑을 나타내며, v 는 차량의 주행속도, R 은 차량이 주행하는 회전반경이다. 또한 차량 각 부의 무게중심에 발생하는 롤링모멘트 M_{i} 는 식(4)와 같이 나타낼 수 있다.

$$
\begin{equation*}
M_{i}=C_{i} h_{i} \cos \theta-W_{i} h_{i} \sin \theta \tag{4}
\end{equation*}
$$

여기서, W_{i} 는 차량 각부의 무게, h_{i} 는 차량 각부의 무게 중심 높이이다.

식(4)에서 구한 차량 각부에 작용하는 롤링모멘트를 Lagrange 방정식의 외력항에 포함시킴으로써 롤링모멘트에 의한 쏠림현상이 고려된 윤하중을 얻을 수 있다.

또한 각각의 차륜이 노면에 작용하는 수평 윤하중은 수직 윤하중에 비례한다. 따라서 각 차륜에 작용하는 수평방향 윤 하중 $C_{t j}$ 는 식(5)에 의해 구할 수 있다.

$$
\begin{equation*}
C_{t i}=\Sigma C_{i} \times \frac{W_{t i}}{\Sigma W_{t i}} \tag{5}
\end{equation*}
$$

여기서, ΣC_{i} 는 차량에 작용하는 원심력의 총합이고, $W_{t i}$ 는 각각의 차륜이 노면에 작용하는 수직 윤하중이다.

3. 동적 거동특성분석

본 절에서는 차량의 곡선교 주행 시 발생하는 원심력을 고 려하였을 때, 곡선교의 동적응답 ${ }^{(4)(5)(6)}$ 과 대상교량의 받침이 그림 8과 같이 강박스거더 외측과 중앙에 배치된 경우에 대 하여 곡선교의 동적응답을 비교, 분석하였다. 곡선교에서는 주행하는 차량 하중에 의해 내측지점에는 부반력이 발생하고, 외측지점에는 정반력이 발생하게 되는데, 본 연구에서는 곡선 교의 받침 특성에 따라 내측 및 외측 지점에 하중의 분배효 과가 달라질 것으로 판단되어, 내측 및 외측 지점의 반력의 동적웅답을 분석하였다. 또한 받침반력의 여러 성분 중 가장 큰 값인 연직성분을 주 대상으로 하고, 주행차량의 재하위치 는 방호벽의 폭과 시방기준에 의하여 외측단부에서 0.9 m 떨 어진 원호위치에 외측차륜중심이 오도록 재하하였다.

그립 8. 받침의 배치위치

3.1 주행차량의 롤링운동에 의한 동적응답분석

주행차량의 롤링운동이 동적응답에 미치는 영향을 알아보 기 위해 내측 및 외측 지점의 연직 반력에 대한 시간이력과 지간 중앙부의 처짐에 대한 시간 이력에 대하여 분석하였다.

차량의 롤링운동에 따른 윤하중의 변화를 고려한 경우와 고려하지 않은 경우에 대하여 받침이 강박스거더 외측에 배 치된 경우는 그림 9에 나타내었고, 받침이 강박스거더 중앙에 배치된 경우는 그림 10 에 나타내었다. 주행속도는 $60 \mathrm{~km} / \mathrm{h}$ 로 하고, 노면조도는 그 영항을 배제하기 위해 완전평탄한 상 태로 가정하였다.

표 6. 룰링 유무에 따른 지점반력의 최대값(tonf) 및 변화율

구분	반 침 배치위치	거 더 외측 배치		거 더 중앙 배치	
롤림	측정지점	내측 (-)	외측 (+)	내측 (-)	외측 (+)
롤링 고려하지 않음	최 대 절대값	6.77	38.75	15.45	49.08
롤림 고려	최 대 절대값	7.86	40.51	17.24	51.66
	증감율 (\%)	+16.1	+4.5	+11.6	+5.3

원심력에 의한 차량의 롤링운동에 따른 윤하중의 변화룰 고려한 경우의 반력 및 처짐의 동적 응답은 윤하중의 변화를 고려하지 않은 경우의 응답보다 크게 나타넜으며, 거의 전체 구간에 걸쳐 윤하중의 변화를 고려했을 때의 응답이 크게 나 타났는데, 받침이 외측에 배치된 경우에 내측지점의 부반력은 16.1%. 외측지점의 정반력은 4.5% 증가하였고, 받침이 중 앙에 배치된 경우에 내측지점의 부반력은 11.6%, 외측지점 의 정반력은 5.3% 증가하였다. 부반력의 경우 증가율만 보 면 받침이 중앙에 배치된 경우가 받침이 외측에 배치된 경우 보다 유리한 것 같으나 절대값으로는 곡선내측지점의 부반력 이 - 15.45 tonf에서 - 17.24 tonf까지 증가되어 받침 중앙 배치의 경우 받침이 외측에 배치된 경우의 -6.77 tonf에서 -7.86 tonf로 증가되는 현상보다 불리하다. 또한 정반력을 받는 외측 지점은 절대값 및 증가율에서 받침이 중앙에 배치 된 경우가 불리함을 알 수 있다.

그림 9. 롤링유무에 따른 시간이력곡선(받침외측배치)

지간 중앙부의 처짐에 있어서도 윤하중의 변화를 고려하였 을 경우에 그림 9 의 (b), 그림 10 의 (b)와 같이 동적응답이 증가하는 경항을 보인다.

그림 10. 뿔링유무에 따른 시간이력곡선(받침중앙배치)

위의 결과를 종합하여 보면, 원심력에 의한 차량의 롤링운 동에 따른 윤하중의 변화는 곡선교에 불리한 영향을 주는 것 을 알 수 있다. 또한 받침이 거더 중앙에 배치된 경우는 그 영향이 더 크므로, 해석에 더욱 주의를 요하게 된다. 따라서 곡선교의 해석에 있어서는 차량의 롤링운동을 고려하여 해석 하는 것이 타담하다고 판단되어, 이후 절의 연구에서는 차량 의 롤링효과를 반영하였다.

3.2 편경사에 따른 동적웅답분석

곡선교가 일반교량과 다른 여러 가지 특징들 중에 하나는 편 경사를 가지고 있다는 것이다. 곡선교에서는 차량이 고속으로 주행시 원심력에 의해 차량이 전복되지 않고 원활하게 주행할 수 있도록 편경사를 설치한다. "건설교통부 제정 도로설계기준 (2001년)"의 "4.3 선형"편(7)에 의하면 연결로의 경우 편경사를 최대 8% 로 제한하는데, 설계속도 $60 \mathrm{~km} / \mathrm{h}$, 곡률반경 150 m 일 때의 편경사는 최대 편경사인 8% 로 정해진다. 한편 도시지역 의 경우에는 설계속도 $60 \mathrm{~km} / \mathrm{h}$, 곡률반경 150 m 일 때의 편경 사는 5% 로 정해진다. 따라서 본 절에서는 편경사에 의한 영향

의 비교를 위해, 편경사가 존재하지 않는 경우를 포함하여 0%, $5 \%, 8 \%$ 의 편경사를 고려하여 동적응답을 분석하였다. 노면조 도는 완전평탄한 상태로 하였으며, 차량의 롤링운동 효과를 고 려하였다. 받침이 외측에 배치된 경우 그림 11 에서 볼 수 있둣 이, 편경사가 증가할수록 반력이 커지는 경향을 보인다. 반면에, 받침이 중앙에 배치된 경우에는 그림 12 와 같이 편경사가 증가 할수록 반력이 작아지는 경항을 나타낸다. 이는 편경사가 커지 면 차량에 작용하는 롤링모멘트가 작아지기 때문으로 판단된다. 또한 부반력의 변화폭이 정반력의 변화폭보다 크게 나타난다. 이러한 반력의 최대값 및 증감율은 표 7에 나타내었다.

그림 11. 편경사에 따른 반력 시간이력곡선(받침외측배치)

그림 12. 편경사에 따른 반력 시간이력곡선(받침중앙배치)

표 7. 편경사에 따른 지점반력의 최대값(tonf) 및 변화율

구분	받 침 배치위치	$\begin{gathered} \text { 거 더 } \\ \text { 외측 배치 } \end{gathered}$		거 더 중앙 배치	
	측정지점	내측 (-)	외측 (+)	내측 (-)	외측 (+)
0\%	최대절대값	7.86	40.51	17.24	51.66
5\%	최대절대값	8.44	40.89	15:93	50.00
	증감율(\%)	+7.4	+0.9	-7.6	-3.2
8\%	최대절대값	8.37	40.98	14.78	49.68
	증감율(\%)	+6.48	+1.15	-14.25	-3.84

그림 13. 곡선 내•외측 지점 반력의 차이(받침외측배치)

그립 14. 곡선 내•외측 지점 반력의 차이(받침중앙배치)

표 8. 곡선 내•외측 지점 반력의 차이의 최대값(tonf)

편 경 사	받 침 배치위치	거 더 외측 배치	거 더 중앙 배치
	쳐대 절대값	45.96	68.34
5%	최대 절대값	46.86	65.12
	증감율 (\%)	+1.9	-4.7
8%	최대 절대값	47.16	64.29
	증감율 (\%)	+2.6	-5.9

그림 13 과 14 에 받침 배치 위치에 따른 내•외측 지점의 반력 차이를 시간이력곡선으로 나타내고, 이 시간이력의 최대 값과 증감율을 표 8 에 나타내었다. 이 결과를 보면, 받침이 외측에 배치된 경우 편경사가 커질수록 하중 분배효과가 감 소하고, 받침 중앙 배치의 경우 편경사가 커질수록 하중분배 효과가 증가함을 알 수 있다.

이러한 결과로 미루어 볼 때, 받침 중앙 배치의 경우 편경 사의 증가에 따라 부반력의 감소효과가 있으며 하중분배효과 도 얻을 수 있음을 알 수 있다.

그림 15. 곡률에 따른 반력 시간이력곡선(받침외측배치)

그립 16. 곡률에 따른 반력 시간이력곡선(받침중앙배치)

3.3 곡률반경에 따른 동적응답분석

곡선교의 곡률반경이 커질수록 차량에 작용하는 원심력은 작아지게 되므로, 곡률반경은 원심력의 크기에 영향을 주는 중요한 인자이다.

그림 15 와 16 은 각각 받침 외측 배치의 경우와 받침이 중 앙에 배치된 경우의 곡률반경의 변화에 따른 반력의 시간이 럭을 나타낸다.

표 9. 곡률반경에 따른 지점반력의 최대값(tonf) 및 변화율

$\begin{aligned} & \text { 구분 } \\ & \text { 곡ㄹㅠㅠ } \\ & \text { 반경 } \end{aligned}$	받 침 배치위치	거 더 외측 배치		거 더 중앙 배치	
	측정지점	내측 (-)	외측 (+)	내측 (-)	외측 (+)
100 m	최대 절대값	14.37	46.30	26.53	59.97
150 m	최대 절대값	7.86	40.51	17.23	51.66
	증감율 (\%)	-45.3	-12.5	-35.0	-13.8
200 m	최대 절대값	4.91	37.56	12.63	47.31
	증감율 (\%)	-65.8	-18.9	-52.9	-12.7

받침이 외측에 배치된 경우 그림 15 에서 볼수 있듯이, 곡 률반경이 증가할수록 반력이 작아지는 경향을 보이고, 받침이 중앙에 배치된 경우에도 그림 16 에서 볼 수 있듯이, 곡률반 경이 증가할수록 반력이 작아지는 경향을 보인다. 이러한 반 력의 최대값 및 증감율은 표 9에 나타내었다.

두 경우 모두 곡률반경이 증가할수록 반력이 급격하게 감 소하는데, 특히 부반력이 정반력에 비하여 큰 폭으로 감소함 을 알 수 있다.

그림 17 과 18 에는 받침 배치 위치에 따른 내•외측 지점 의 반력 차이를 시간이력곡선으로 나타내고, 이 시간이력의 최대값과 증감율을 표 10 에 나타내었는데, 받침이 외측에 배 치된 경우에 비해 받침이 중앙에 배치된 경우 곡률반경이 커 질수록 반력의 차이가 더 큰 폭으로 감소하는 것을 보여준다. 그러나. 큰 곡률반경에서 받침 중앙 배치의 부반럭이 크게 감 소한다고 하여도 그 값은 받침 외측 배치에 비해 여전히 큰 차이를 가지므로 받침이 중앙에 배치된 경우가 받침이 외측 에 배치된 경우에 비해 유리하다고 할 수는 없다.

그림 17. 곡선 내•외측 지점 반력의 차이(받침외측배치)

그림 18 . 곡선 내•외측 지점 반력의 차이(받침중앙배치)
표 10. 곡선 내•외측 지점 반력의 차이의 최대값(tonf)

곡률반경	받침배치위치	거더 외측 배치	거더 중앙 배치
100 m	쳐대 절대값	57.90	85.00
150 m	최대 절대값	45.96	68.34
	증감율 $(\%)$	-20.6	-19.6
200 m	최대 절대값	39.92	59.65
	장감율 (\%)	-31.0	-29.8

즉, 받침이 외측에 배치된 경우가 받침이 중앙에 배치된 경우에 비해 하중분배가 효율적으로 이루어지며, 곡률반경올 크게 함으로써 하중분배를 더욱 효율적으로 할 수 있다. 받 침이 중앙에 배치된 경우에도 반침이 외측에 배치된 경우에 비해 정•부반력이 큰 값을 가지지만 곡률반경을 크게 함으 로써 하중분배효과를 증가시킬 수 있을 것으로 판단된다.

그림 19. 받침에 따론 반력 시간이력곡선(받침외측배치)

그립 20. 받침에 따른 반력 시간이력곡선(받침중앙배치)

3.4 받침 종류에 따른 동적응답분석

이상의 분석은 교량의 받침부분은 모형화하지 않은 상태에 서의 동적응답을 분석한 것이었다. 곡선교에서는 차량 주행에 따라 정반력과 부반력이 교차하여 작용하므로 교량 받침부의 거동이 일반 직선교와는 다른 경향을 나타낼 것으로 판단된 다. 그러므로, 이 절에서는 교량의 받침부를 포트받침과 탄성 받침을 사용하여 그림 5 와 같이 모형화하여 동적응답을 비교 분석해 보았다. 동적응답의 경우 차량의 주행속도는 $60 \mathrm{~km} / \mathrm{h}$ 로 노면상태는 완전평탄상태로 하였으며 차량의 롤링운동효 과를 고려하였다.
그림 19 와 20 은 각각 받침이 외측에 배치된 경우와 받침

이 중앙에 배치된 경우의 받침의 종류에 따른 반력의 시간이 력을 나타낸다.

그림 19에서 보듯이 받침이 외측에 배치된 경우, 받침을 모형화하지 않은 경우와 포트받침의 경우는 거의 동일한 결 과를 나타내고, 탄성받침의 경우 포트받침에 비해 각각 부반 력이 0.8% 증가하고 정반력은 0.4% 감소하여 매우 작은 차 이를 보인다.

한편, 그림 20 에서 보듯이 받침이 중앙에 배치된 경우, 받 침을 모형화하지 않은 경우와 받침을 모형화한 경우가 앞서 와는 다른 시간이력을 나타내는데, 이는 받침이 외측에 배치 된 경우 차량하중에 의한 부반력에 비하여 교량의 사하중에 의한 정반력이 크므로 곡선 내부 지점에 실제로 부반력을 발 생시키는 경우가 나타나지 않는 반면, 받침이 중앙에 배치된 경우에는 차량하중에 의한 부반력에 비하여 교량의 사하중에 의한 정반력이 작으므로 곡선 내부 지점에 실제로 부반력을 발생시키는 구간이 발생하므로 받침부에서 모형화 된 부반력 저항부의 영향이 교량의 응답에 영향을 주는 것으로 판단된 다. 이러한 반력의 최대값 및 증감율은 표 11 에 나타내었다.

표 11. 받침종류에 따른 지점반력의 최대값(tonf) 및 변화율

	받 침 배치위치	거 더 외측 배치		거 더 중앙 배치	
	측정지점	내측 (-)	외측 (+)	내측 (-)	외측 (+)
-	최대 절대값	7.86	40.51	17.24	51.66
포트	쳐대 절대값	7.86	40.51	17.51	51.82
받침	증감율 (\%)	0.0	0.0	+1.6	+0.3
탄성	최대 절대값	7.92	40.36	17.69	51.92
받침	증감율 (\%)	+0.8	-0.4	+0.3	+0.5

또한, 지간 중앙부 처짐의 시간이력을 그림 21 과 22 에 나 타내었는데, 받침이 외측에 배치된 경우에 받침을 모형화하지 않은 경우와 포트받침의 경우는 차이가 나타나지 않는 반면, 탄성받침의 경우는 처짐의 응답이 1.9% 증가하여 나타나고, 받침이 중앙에 배치된 경우에도 탄성받침의 경우 포트받침에 비하여 처짐의 응답이 3.4% 증가하여 나타남을 알 수 있다. 따라서. 탄성받침은 다른 받침에 비해 하중전달이 효율적이며 전단변형에 의한 이동과 탄성변형에 대한 회전이 자유로우므 로 사교 및 곡선교에 유리하다고 알려져 있으나 곡선교에 탄 성받침을 적용하게 되는 경우에는 앞의 결과와 같이 처짐에 대하여 보다 큰 웅답을 나타내므로 포트받침을 사용하는 경 우보다 세심한 주의가 필요하다고 판단된다.

그림 21. 지간중앙부의 처짐(받침외측배치)

그림 22. 지간중앙부의 처짐(반침중앙배치)

4. 결론

곡선교의 경우 직선교와 달리 교량의 지점에 부반력과 교 축방향의 힘이 발생하게 되므로 교량의 모형화와 거동해석에 있어서 특별한 주의가 필요할 것으로 판단된다. 본 논문에서 는 받침 배치에 따른 교량의 동적 응답에 대한 영향을 다양 한 매개변수를 이용하여 분석한 결과를 다음과 같이 정리하 였다.
(1) 곡선교에서 차량의 롤링운동은 처짐을 1.5% 증가시 키고, 반력을 $12 \sim 16 \%$ 증가시키므로 롤링운동에 의 한 효과는 반력에 대해 더욱 큰 영향을 주며, 받침이 거더 중앙에 배치된 경우의 반력은 거더 외측에 배치 된 경우의 반력보다 $22 \sim 56 \%$ 증가하여 불리하게 나 타났다.
(2) 받침이 박스거더 외측에 배치되어 받침간격이 넓은 경 우에는 편경사의 크기에 따른 지점 반력의 변화가 크 지 않은 반면, 받침이 중앙에 배치되어 좁은 경우에는 편경사의 증가에 따라 변화를 보이며, 내부지점 부반 럭은 $8 \sim 14 \%$ 정도까지 감소한다.
(3) 곡률반경이 작아지면 동적효과가 커지는데, 받침이 박 스거더 외측에 배치된 경우에는 $3 \sim 9$ tonf 증가하고, 받침이 중앙에 배치된 경우에는 $5 \sim 14$ tonf 증가하므 로, 받침이 박스거더 외측에 배치된 경우가 곡률감소 에 따른 동적효과가 더 작게 나타났다. 또한, 받침 외측 배치의 경우가 받침 중앙 배치의 경우에 비해 하 중분배가 효율적으로 이루어지며, 곡률반경을 크게 함 으로써 하중분배를 더욱 효율적으로 할 수 있다.
(4) 부반력이 발생하는 곡선교에서 탄성받침을 사용하는 경우에는 처짐에 대한 주의가 필요할 것으로 판단된 다.

감사의 글

본 연구는 1999~2002년도 두뇌한국21 핵심분아사엽 지 원으로 수행되었음을 밝히며 이에 감사드립니다.

참고문헌

1. 김상효, "곡선강박스거더교의 정 • 동적거동 특성분석", 한 국강구조공학혜 학술발표희 논문집, pp.354-361, 2002.
2. 장숭필, "차랑하중하의 곡선교의 동적해석", 대한토목학희 논문집, 제 16 권, 제I-2호, pp. 123~133, 1996.
3. Hambly, E. C., Bridge Deck Behavior, 2nd ed., Chapman \& Hall, 1991.
4. Mermertas, V., "Dynamic Interaction Between The Vehicle and Simply Supported Curved Girder Deck", Comput. Methods Appl. Mech. Eng., Vol.162, pp.125~131, 1998.
5. Wang, T.L.. "Dynamic Response of Multigirder Bridges", J of Structural Engineering, ASCE, Vol.118, No.ST8, pp.2222-2238, 1992.
6. Christiano, P. P, "The Dynamic Response of Horizontally Curved Bridges subject to Moving Loads", Ph.D Thesis, Carnegie-Mellon Univ., 1967.
7. 건설교통부, "도로설계기준", pp. $38 \sim 54,2001$.
(접수일자 : 2002년 8월 16일)

[^0]: 1) 정회원, 연세대학교 사회환경시스템공학부 교수
 2) 학생회원, 연세대학교 토목공학과 박사과정
 3) 연세대학교 토목공학과 석사과정
