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ABSTRACT : Genetic markers engendered by genome projects drew enormous interest in quantitative genetics, but knowledge on 
genetic architecture of complex traits is limited. Complexities in genetics will not allow us to easily clarify relationship between 
genotypes and phenotypes for quantitative traits. Quantitative genetics guides an important way in facing such challenges. It is our 
exciting task to find genes that affect complex traits. In this paper, landmark research and future prospects are discussed on genetic 
parameter estimation and quantitative trait locus (QTL) mapping as major subjects of interest. (Asian-Aust. J. Anim Sci. 2002. Vol 15, 
No. 2 : 303-308)
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INTRODUCTION

Today, the basic structure and biological properties of 
DNA have become well known by numerous scientific 
efforts. The DNA sequence with only four kinds of bases 
and its duplication property have allowed geneticists to 
detect particular DNA sequences to be purified or 
immortalized. DNA itself has shown only modest evidence 
of possessing any intrinsic catalytic activities, but its 
importance lies on the interaction of a DNA with another 
DNA, other molecule, or proteins. Many experimental 
efforts from clinical diagnoses to gene identification were 
made to understand the function of genes. Although the 
prospect that many functions will be discovered by 
experimental tests (for example, use of knock out animals) 
in the future is plausible, the functions of genes responsible 
for many phenotypes are not straightforward. The 
complexities of genetics in human and animals are often 
staggering, especially for quantitative traits. These 
complexities arise from the fact that each factor contributes, 
at most, to a modest amount in explaining the phenotypic 
variance for the trait. Multiple genetic and environmental 
factors may interact with each other in unpredictable ways. 
The expression of such trait may not be anticipated from 
knowledge of each factor considered alone, no matter how 
thoroughly the factors may have been separately understood. 
Thus, the entire effect is not likely to be the same as the 
sum of effects for its components. Rational quantitative 
approaches are in need to understand such complex genetics.

The genetic architecture of a complex trait consists of 
all the genetic and environmental factors that affect the trait, 
along with the magnitude of their individual effects and 
interaction effects among the factors. It is critical to 
recognize that the genetic architecture represents more of a 

characteristic of a trait in a particular population rather than 
a fundamental biological property of the trait. 
Quantitative genetics may guide an important way in 
understanding the genetic nature of populations. Genetic 
variation is assumed for many genetic phenomena such as 
inbreeding, selection, and genetic drift. Quantified genetic 
variation serves a variety of purposes in related disciplines. 
For example, genetic variance within a population is used 
for selection in animal breeding, and genetic variance 
among populations helps us capture traces of evolution. 
Recently, genetic variance components in mixed model 
methodology have been a great concern to animal 
geneticists. More recently, quantitative trait locus (QTL) 
analysis became a hot issue with genome projects, and the 
mixed model approach will be of great use in developing 
methods for QTL analysis. This paper addresses some 
landmark research and future prospect in quantitative 
genetics.

A HISTORICAL VIEW

A landmark study of quantifying Darwinian natural 
selection was established by Ronald Fisher, and was 
published as 'The Genetic Theory of Natural Selection" 
(Fisher, 1930). His major contribution was also to introduce 
to various genetic theories such as progressive selection and 
inbreeding and to develop the corresponding statistics such 
as selection intensity and inbreeding coefficient. Fisher is 
called the father of Modern Statistics and Fisherian 
Genetics considerably influenced current quantitative 
genetics. Along with Fisher, Sewall Wright contributed to 
developing theories of inbreeding, genetic drift, and finite 
population size. Haldane showed us a mathematical theory 
of selection at a sin이e locus. One of the successors for the 
theoretical Genetics was Motoo Kimura who studied the 
neutrality theory, linkage, population structure and 
quantitative traits and published an invaluable textbook on 
population genetics with his fellow, James Crow (Crow and 

mailto:clee@sun.hallym.ac.kr


304 CHAEYOUNG LEE

Kimura, 1970). Russell Lande modernized many 
evolutionary matters by quantitative genetics in 1970s.

Meanwhile, selection model for estimating individual 
genetic merits has been a great concern to animal 
geneticists. Since least square analysis of Jay Lush had 
been widely used for such a purpose, a landmark research 
was found in the development of the mixed model by 
Charles Henderson in 1950s. Such models include random 
effects, and the genetic merits are assumed as these random 
effects. In the last half of the twentieth century, a 
considerable amount of efforts were devoted to develop 
methods for estimating genetic variance and genetic effects 
with the mixed models by Henderson and his students and 
fellows. Nowadays a standard analytical method is to use 
the animal model (Quaas and Pollak, 1980) with the 
restricted maximum likelihood (REML) estimates of 
variance components (Patterson and Thompson, 1971). 
Furthermore, the use of the mixed model has gained its 
popularity in various fields now.

Although there has been a rapid proliferation of 
methods for variance component estimation and QTL 
mapping, some scholars who lack understanding of 
technically demanding methods had claimed the decline of 
quantitative genetics and have avoided to deal with it as a 
successful research field. To such an unfortunate claim, I 
would like to cite Michael Lynch and Bruce Walsh (1998) 
as a response:

"... the reality is that as a tool for the analysis of complex 
characters, quantitative genetics is as alive as it has ever 
been. . quantitative genetics is still fully capable of 
accommodating characters with small numbers of loci, 
nonadditive effects, non-Mendelian inheritance, ... the 
current machinery of quantitative genetics stands waiting 
to incorporate the fine genetic details of complex traits 
being elucidated by molecular and developmental 
biologists.

Lynch and Walsh (1998)

GENETIC PARAMETER ESTIMATION

Genetic parameters are stressed not only for 
characteristics of populations but also for estimation of 
individual genetic merits. This is because the variance 
component estimates are important to obtain accurate 
predictors and estimators when data are analyzed using a 
mixed model. Variance component estimation is 
straightforward for balanced data but not for unbalanced 
data. Lack of orthogonality among factors in unbalanced 
data led to a variety of methods for variance component 
estimation (Lee, 2000a). For unbalanced data, Henderson 
(1953) developed four different sets of quadratic forms 
from Fisher’s (1925) ANOVA table which summarizes a 

partitioning of observed variability. A merit of these 
ANOVA-based methods is unbiasedness of the estimates, 
but the estimates are not necessarily nonnegative, which is a 
fatal property for researchers to avoid them. Other methods 
to estimate variance components are minimum variance 
quadratic unbiased estimation (MIVQUE) and minimum 
norm quadratic unbiased estimation (MINQUE) with 
desirable properties of unbiasedness and minimum variance. 
The MIVQUE is to minimize an unknown variance and to 
assume normality. The MINQUE is to minimize a known 
Euclidean norm. The MINQUE does not require the 
normality assumption and reduces to MIVQUE under 
normality. Despite of the desirable properties, their 
empirically biased variance component estimates and large 
mean square errors also made researchers to avoid them 
(Van Tassell et al., 1995). Next, maximum likelihood (ML) 
of Hartley and Rao (1967) was introduced to variance 
component estimation. The ML estimator has attractive 
features of large sample properties. The estimators are 
asymptotically unbiased, and the asymptotic dispersion 
matrix of the estimators is available. The dispersion matrix 
is in fact the inverse of Fisher’s information matrix.
Furthermore, the dispersion matrix asymptotically achieves 
the Cramer-Rao lower bound for the dispersion matrix of 
unbiased estimators. That is, the estimators have the 
property of asymptotic efficiency (Casella and Berger, 
1990). In order to account for the loss in degrees of freedom 
on estimating fixed effects, restricted maximum likelihood 
(REML) of Patterson and Thompson (1971) was also 
introduced to variance component estimation. Although 
REML estimators have almost the same statistical
properties as ML regardless of merit or demerit, researchers 
prefer REML to ML only because ML does not take account 
of the degrees of freedom involved in estimating fixed 
effects while REML overcomes the problem. REML 
estimates must be in the parameter space, and this leads to 
the estimates biased. However, the REML estimators are 
likely to have the property of unbiasedness when 
considering that, for balanced data, the solutions to REML 
equations are equivalent to those from ANOVA (Searle et 
al., 1992). Simulation studies showed that input values of 
the variance components were obtained by REML 
regardless of selection (Jensen and Mao, 1991; Lee and 
Pollak, 1997a; Schenkel and Schaeffer, 1998). Today, 
REML estimation is most widely used method in animal 
breeding. Development of computing algorithms for REML 
estimation of variance components have been a nontrivial 
task and a great concern because the highly nonlinear 
likelihood functions are not allowed solutions in closed 
form for variance components. Various maximization 
methods are available, and these methods are typically 
divided into the three types: 1) methods using first and 
second derivatives of the likelihood, 2) methods using only 
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first derivative, and 3) methods using no derivative. The 
final category is called derivative free REML (DFREML, 
Smith and Graser, 1986) and is a choice for researchers.

Meanwhile, best linear unbiased predictors (BLUP) of 
individual genetic merits exist under the assumption of 
known variance components. In reality, the variance 
components estimated by methods addressed above are 
used, so they are not any more BLUP. Bayesian inference 
overcomes the problem on non-BLUP of genetic merits 
when using REML variance component estimates. 
Furthermore, Bayesian approach always gives exact 
posterior densities of variance components while REML 
estimates have unknown distributions for small data sets 
(Gianola and Fernando, 1986). Bayesian approach became 
feasible through Markov Chain Monte Carlo (MCMC) 
methods with increasingly powerful computers. The Gibbs 
sampler as an MCMC is a method of numerical integration 
that iteratively generates samples from the full conditional 
densities of all the unknowns. Full conditional posterior 
densities have been derived for the application of Gibbs 
sampling by Wang et al. (1993) for a sire model, by Lee and 
Pollak (2001) for a sire-maternal grandsire model, by Van 
Tassell et al. (1995) for an animal model, by Jensen et al. 
(1994) for a maternal effect model, by Van Tassell and Van 
Vleck (1996) for a multivariate model, by Sorenson et al. 
(1995) for a threshold model, and by Thaller and Hoeschele 
(1996a) for a linkage analysis. Intensive computing from 
Gibbs sampling became feasible through availability of 
powerful computers. Considering dramatic development of 
computing facilities, MCMC will be widely used wherever 
difficulties like multi-dimensional integrals make it unable 
to obtain likelihood and posterior density in closed forms.

Furthermore, advances in variance component 
estimation with complicated models such as generalized 
linear mixed models (GLMM) enabled animal breeders to 
analyze nonnormal data. The GLMM is to combine mixed 
models with Nelder and Wedderburn’s (1972) generalized 
linear model (GLM) where observations have the 
distributions of exponential families, and systematic effects 
are monotonically linked to the mean. The likelihood 
produced with the GLMM is hardly obtained in closed form 
due to high dimensional integrals. In order to avoid the 
problem, researchers suggested various methods such as 
penalized quasi-likelihood (Breslow and Clayton, 1993), 
simulation-based method (McCulloch, 1994), Laplace 
approximation (Tempelman and Gianola, 1993), Gibbs 
sampling (Sorenson et al., 1995), and maximum adjusted 
profile hierarchical likelihood estimation (Lee, 2000b). 
Advances in the efficiency of computing algorithms made 
the increasingly complex models possible. More 
complicated models are expected to explain complex 
biology with advanced statistics and efficient computing 
algorithms. In order to explain heterogeneity of variance 

components by different environments, log-linear structural 
model of San Cristobal et al. (1993) would be more flexible 
and complicated. Flexible Models with random effects 
having non-normal distributions are also expected. An 
example is a Poisson-Gamma hierarchical model by Lee 
and Lee (1998). The model assumes a Poisson distribution 
for residuals and a Gamma distribution, as a conjugate 
family of the Poisson distribution, for random effects. 
This hierarchical model might overcome the lack of 
consistency and invariance shown from the joint 
maximization of the likelihood in GLMM. Furthermore, 
in order to explain complex genetics, a lot of attention will 
be given on more complex analytical models such as 
multistage hierarchical models and the corresponding 
optimal computational algorithms.

QUANTITATIVE TRAIT LOCI MAPPING

Determining the number of genes involved with 
quantitative traits and their effects on the traits had been a 
difficult task before intensive efforts were given on genome 
project that sequenced genomes. Recently, many genetic 
markers have become available, and there has been a rapid 
proliferation of methods for identifying, locating, and 
characterizing quantitative trait loci (QTLs) linked to the 
genetic markers.

The idea of the marker-based QTL mapping is to utilize 
marker-QTL association created from linkage 
disequilibrium among loci by matings. The single marker 
analysis examines the distribution of trait values separately 
for each marker locus. The additive and dominance effects 
are, however, confounded with the amount of 
recombination. The interval mapping examines an 
association between each pair of adjacent markers and a 
QTL (Lander and Botstein, 1989), and offers the position 
and the effects of QTLs. However, the estimates from the 
interval mapping are biased when multiple QTLs are 
involved. The multipoint mapping uses all the linked 
markers on a chromosome simultaneously. An overfitting 
problem is created from the multipoint mapping when the 
number of regressor variables is large. The composite 
interval mapping is a modified interval mapping by 
incorporating a few additional single markers for each 
analysis (Zeng, 1993). Usually, the resolution of QTL 
locations is considerably improved by introducing a few 
additional well-chosen marker loci. The multiple interval 
mapping uses multiple marker intervals simultaneously to 
fit multiple putative QTLs directly in the model (Kao, 
1999). Epistasis for QTLs can be also estimated by this 
method. The methods addressed above are based on 
conditional probability of QTL genotype given the observed 
marker genotype, and are used with various experimental 
designs for inbred lines.
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On the other hand, the identity-by-descent (IBD) 
mapping is often used for the outbred population which is 
more popular in human and animals. This method is to 
specify the expected genetic covariance between arbitrary 
relatives as a function of the IBD relationships at a QTL and 
to determine proximity based on the number of cases where 
marker alleles and QTL alleles have not recombined.

More recently, developing methods for QTL mapping in 
multiple crosses or populations has drawn various research 
endeavors from quantitative geneticists (George et al., 
2000; Walling et al., 2000; Zou et al., 2001). QTL designs 
combining information from multiple crosses or 
populations are more powerful than those involving a single 
cross (Lynch and Walsh, 1998). Current methods for 
complex pedigrees are not completely satisfactory (George 
et al., 2000). The difficulties arise from unknown marker 
genotypes and unknown marker phases, especially for data 
with multiple generations. Another great concern is to 
analyze QTL as random effects by introducing mixed model 
methodology (Xu and Yi, 2000). This again demonstrates 
the importance of estimating genetic parameters in the 
mixed model framework.

More new methods with abundant markers are expected 
in order to examine the nature of complex traits. In near 
future, the number of markers will be dramatically 
increased by numerous efforts to produce quality maps of 
single nucleotide polymorphisms (SNPs). Computing 
algorithms should be efficiently developed for intensive 
computing, not only because it deals with complex traits, 
but also because the sample size is expected to be 
tremendously large.

More complicated experimental designs and analytical 
models are required to understand genetic architecture as 
more candidate loci are revealed. Increasing interests in 
genotypes at candidate loci push to identify and quantify 
epistasis with other loci and interaction with environmental 
factors. Genetic variance unexplained at the candidate loci 
should be explained by correlation among relatives and be 
quantified as a residual genetic variance component or as a 
polygenic variance component. It is quite feasible, in the 
future, that genetic merit of individual for some complex 
traits of interest is predicted from its known genotypes at 
particular candidate loci and from its relatives' phenotypes 
by pedigree.

FUTURE CONSIDERATION

The keys that hold the future of quantitative genetics are 
largely on developing more legitimate methods for genetic 
parameter estimation, especially for QTL analysis as 
discussed above. In this section, I would like to address 
three important questions to be considered for future genetic 
parameter estimation. Could it be that genetic effects are 

too complex for us to find an explanation with current 
methods? This question goes beyond the typical question of 
asking whether a specific method has sufficient power for a 
specific data set. Two examples are presented here.

The first example is about complex interaction between 
genetic and environmental effects. It is not the matter of 
measuring the size of the interaction, but the matter of 
biological explanation. Sire-by-year interaction variance 
explained 3% of phenotypic variance when a maternal 
genetic model was used for analyzing Simmental cattle data 
(Lee and Pollak, 1997a). Such interaction is rather too 
complex to be biologically explained. Another study by Lee 
and Pollak (1997b) showed that possible bias on that 
interaction variance estimate could be from the sire 
misidentification.

The second example is the debate on direct-maternal 
genetic correlation in beef cattle. This debate goes beyond 
the fact that direct-maternal genetic correlation estimates 
vary by data sets. The more relevant question to pursue is 
whether negative genetic correlation estimates are artifacts 
or not. Many researchers found negative genetic correlation 
between direct and maternal effects in real data. However, it 
was suspected that the estimates might not be obtained 
directly from real genetic antagonism, but indirectly from 
other factors such as sire-by-year interaction (Lee and 
Pollak, 1997b) and selective reporting (Mallinckrodt et al., 
1995). On the other hand, there was an attempt to explain 
the genetic antagonism with a physiological theory (Lee and 
Pollak, 2001).

How realistic are the systematically explained 
environmental effects included in an analytical model? 
Genetic architecture explains genetic and environmental 
effects. Theoretically speaking, it is possible to define the 
genetic factors in terms of Mendelian segregation and the 
location along a genetic map. On the other hand, the 
environmental factors are hardly partitioned into separate 
factors whose individual effects and interactions can be 
sorted out. Although their ambiguous parts are explained as 
residuals from the model, there is always the possibility of 
failure to notice some significant environmental effects and 
their complex interactions with other environmental effects 
or genetic effects.

How do we handle the possibility of a false positive or 
false negative QTL detection? The false positive or negative 
QTL detection may be due to an insufficient statistical 
power or an unreasonable significance threshold, and may 
be revealed by replicated studies. This problem becomes 
more serious when a large number of marker loci are 
examined. Technically, they are so called Type I and Type II 
errors, and the question also goes beyond the matter of 
reducing those errors. A QTL detected by one group but not 
by other groups should not be ignored because of different 
genetic structure of populations. Suppose a simple case 
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where a trait is significantly influenced by the interaction of 
two recessive alleles at different loci. In a certain population, 
one allele is extremely rare and the other extremely 
common. The trait appears to be influenced by the rare 
allele in the population because its presence guarantees a 
large probability of having the two alleles while the 
probability is small given the presence of the common allele. 
Suppose another population where their allele frequencies 
are reversed. Then the other allele would appear to be the 
influencing the trait. The QTL should be located differently 
between the two populations, and the different results are 
both correct. The fact is, however, that both recessive alleles 
in either population influence equally to the trait. The 
different QTL locations were caused by different gene and 
genotype frequencies in the two populations. Of course, 
mutation may also generate new QTL in a particular 
population. Genetic architecture is, in fact, a moving target 
that changes depending on genetic and environmental 
variances of a certain population.

CLOSING REMARKS

Widely publicized genome projects brought about a 
great deal of interest from the general public as well as from 
the scientific community. However, the knowledge on 
relationships between genotypes and phenotypes for 
quantitative traits has been extremely limited, and will not 
be clarified in a foreseeable time frame. This is because of 
complexities in genetics. Further difficulties arise from the 
fact that typical human and animal families are naturally 
quite limited, and most of them are considerably
heterogeneous. We need to recognize that genetic
mechanisms fundamentally distinguish complex traits from 
simple traits and that statistics explain the uncertainty in 
genetic mechanisms as well as in population genetic 
properties.

Advances in statistical methods is essential for 
analyzing experimental crosses and pedigrees to detect 
segregating QTLs associated with molecular markers based 
on quite dense linkage maps produced by genome projects. 
The future of understanding quantitative traits is quite 
promising. It is our exciting challenge to find genes that 
affect virtually any trait of interest, and quantitative 
genetics will play an unprecedently important role in 
understanding the inheritance of quantitative traits.

It is a time to reflect on development of new methods in 
Asia, which has lagged far behind the efforts outside of the 
continent. Most Asian countries are sufficiently naive about 
complex traits. Animal geneticists in Asian countries have 
paid less attention in exploring and adopting methods 
developed in other areas. Every effort should be made to 
encourage the development of new methods. It is also 
important to emphasize that no single method for complex 

genetics can be universally adopted and the universal use of 
single method in every study leads to limited, biased, or 
wrong findings. Our knowledge on genetic architecture will 
be more extensive only by developing various methods.
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