DOI QR코드

DOI QR Code

Control of Singlet Oxygen-induced Oxidative Damage in Escherichia coli

  • Kim, Sun-Yee (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Eun-Ju (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Park, Jeen-Woo (Department of Biochemistry, College of Natural Sciences, Kyungpook National University)
  • 발행 : 2002.07.31

초록

Singlet oxygen ($^1O_2$) is highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide desmutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of anticxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.

키워드

참고문헌

  1. Amici, A, Levine, R. L., Tsai, L. and Stadtman, E. R. (1989) Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J. Biol. Chem. 264, 3341-3346.
  2. Beers, R. F. Jr and Sizer, I. W (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133-140.
  3. Bowen, S. W and Hassan, H. M. (1988) Induction of the manganese-containing superoxide dismutase in Escherichia coli is independent of the oxidative stress (oxyR-controlled) regulon. J. Biol. Chem. 263, 14808-14811.
  4. Christman, M. F.. Morgan, R. W, Jacobson, F. S. and Ames, B. N. (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41, 753-762. https://doi.org/10.1016/S0092-8674(85)80056-8
  5. de Mol, N. J., van Henegouven, G. M. J. B. and van Beele, B. (1981) Singlet oxygen formation by senSltlzation of furocoumarins complexed with, or bound covalently to DNA Photochem. Photobiol. 34, 661-666 https://doi.org/10.1111/j.1751-1097.1981.tb09421.x
  6. Demple, B. and Halbrook, J. (1983) Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304, 466-468. https://doi.org/10.1038/304466a0
  7. Egorov. S. L, Babizhaev, M. A, Krasnovskii, A A Jr and Shredova, A. A (1987) Photosensitized generation of singlet molecular oxygen by endogenous substances of the eye lens. Biojizika 32, 169-171.
  8. Foote, C. S. (1977) Singlet oxygen; in Free Radicals in Biology, Pyror, W A (ed.), pp. 85-133, Vol. 2, Academic Press, New York, New York.
  9. Greenberg, J. T., Monach, P., Chou, J. H.. Josephy, P. D. and Demple, B. (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 6181-6185. https://doi.org/10.1073/pnas.87.16.6181
  10. Halliwell, B. and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, Oxford Press, Oxford, UK.
  11. Ha-an, T. and Khan, A U. (1986) Phototoxicity of the tetracyclines: photosensitized emission of singlet delta dioxygen. Proc. Natl. Acad. Sci. USA 83, 4604-4606. https://doi.org/10.1073/pnas.83.13.4604
  12. Henderson, B. W and Dougherty, T. J. (1992) How does photodynamic therapy work? Photochem. Photobiol. 55, 145-157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
  13. Joshi, P. C. (1985) Comparison of the DNA-damaging property of photosensitized riboflavin via singlet oxygen ($^{1}O_{2}$) and superoxide radical $O^{-}_{2}$ mechanisms. Toxicol. Lett. 26, 211-217. https://doi.org/10.1016/0378-4274(85)90169-9
  14. Kanofsky, J. R (1989) Singlet oxygen production by biological systems. Chem. Biol. Interact. 70, 1-28. https://doi.org/10.1016/0009-2797(89)90059-8
  15. Kim, S. Y., Kim, RH., Huh, T. L. and Park, J-W. (2001) $\alpha$-Phenyl- N-t-butylnitrone protects oxidative damage to HepG2 cells. J. Biochem. Mol. Biol. 34, 43-46.
  16. Kono, Y. and Fridovich, I. (1982) Superoxide radical inhibits catalase. J. BioI. Chem. 257, 5751-5754.
  17. Krinsky, N. I. (1974) Membrane photochemistry and photobiology. Photochem. Photobiol. 20, 532-535 https://doi.org/10.1111/j.1751-1097.1974.tb06616.x
  18. Levine, R L., Williams, J. A., Stadtrnan, E. R and Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233,346-357. https://doi.org/10.1016/S0076-6879(94)33040-9
  19. Mathews-Roth, M. M. (1986) Beta-carotene therapy for erythropoietic protoporphyria and other photosensitivity diseases. Biochimie 68, 875-884 https://doi.org/10.1016/S0300-9084(86)80104-3
  20. Morgan, R W., Christrnan, M. F., Jacobson, F. S., Storz, G. and Ames, B. N. (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA 83, 8059-8063 https://doi.org/10.1073/pnas.83.21.8059
  21. Sies, H. (1986) Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl. 25, 1058-1072 https://doi.org/10.1002/anie.198610581
  22. Storz, G., Christrnan, M. F., Sies, H. and Ames, B. N. (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhirhurium. Proc. Natl. Acad. Sci. USA 84, 8917-8921. https://doi.org/10.1073/pnas.84.24.8917
  23. Tabatabaie, T. and Floyd, R A. (1994) Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys. 314, 112-119 https://doi.org/10.1006/abbi.1994.1418
  24. Weishaupt, K. R, Gomer, C. J. and Dougherty, T. J. (1976) Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 36, 2326-2329.

피인용 문헌

  1. Effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy (PACT) on the antibiotic susceptibility of clinical bacterial isolates vol.99, pp.1, 2010, https://doi.org/10.1016/j.jphotobiol.2010.02.004
  2. Bacterial responses to photo-oxidative stress 2009, https://doi.org/10.1038/nrmicro2237
  3. The effect of thermal treatment on antibacterial properties of nanostructured TiO2(N) films illuminated with visible light vol.25, pp.1, 2009, https://doi.org/10.1007/s11274-008-9856-6
  4. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes vol.5, pp.12, 2011, https://doi.org/10.1038/ismej.2011.68
  5. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria vol.525, pp.2, 2012, https://doi.org/10.1016/j.abb.2012.02.007
  6. Mechanism of antibacterial activity of copper nanoparticles vol.25, pp.13, 2014, https://doi.org/10.1088/0957-4484/25/13/135101
  7. Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond vol.37, pp.6, 2013, https://doi.org/10.1111/1574-6976.12026
  8. DNA damage by singlet oxygen and cellular protective mechanisms vol.751, pp.1, 2012, https://doi.org/10.1016/j.mrrev.2011.12.005
  9. A Possible Phenomenon of Persistence inPseudomonas aeruginosaTreated with Methylene Blue and Red Light vol.92, pp.5, 2016, https://doi.org/10.1111/php.12613
  10. Light effect and reactive oxygen species in the action of ciprofloxacin on Staphylococcus aureus vol.76, pp.1-3, 2004, https://doi.org/10.1016/S1011-1344(04)00092-2
  11. Isolation and Identification of an Antioxidant Enzyme Catalase Stimulatory Compound from Garnoderma lucidum vol.36, pp.5, 2003, https://doi.org/10.5483/BMBRep.2003.36.5.450
  12. fur−mutation increases the survival time ofEscherichia coliunder photooxidative stress in aquatic environments vol.63, pp.3, 2012, https://doi.org/10.1556/ABiol.63.2012.3.10
  13. The Effect of UV-A and Various Visible Light Wavelengths Radiations on Expression Level of Escherichia coli Oxidative Enzymes in Seawater 2013, https://doi.org/10.5812/jjm.4917
  14. Aged TiO2-Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and SensitizesEscherichia colito Cadmium vol.48, pp.9, 2014, https://doi.org/10.1021/es500216t
  15. Toluidine blue O photodynamic inactivation on multidrug-resistantpseudomonas aeruginosa vol.41, pp.5, 2009, https://doi.org/10.1002/lsm.20765
  16. Inducing the oxidative stress response in Escherichia coli improves the quality of a recombinant protein: Magnesium chelatase ChlH vol.101, 2014, https://doi.org/10.1016/j.pep.2014.06.004
  17. Sublethal Photodynamic Treatment Does Not Lead to Development of Resistance vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01699