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ABSTRACT

The grinding process has been mainly used for finishing metal products as final machining stage. But chatter
vibration and burn of a workpiece have a bad effect on the machined surface and should be detected in modern

grinding process. This paper deals with a fault detection of the cylindrical plunge grinding process by power parameters.

During the grinding process the power signals of an induced motor were sampled and used to determine the relationship
between fault and change of power parameters. A neural network was used for detecting the grinding fauit and
an influence of power parameters to the grinding fault was analyzed.

Keywords: Grinding process, Power parameters, Fault detection, Neural network

1. Introduction

At the present time, one of important grinding related
researches is a realization of an on-line fault detection
system. The grinding process has machined fine products
that cannot be met for constraints, such as surface
roughness and geometric error, with traditional cutting
processes. However, there are unique characteristics of
the grinding process in tools, cutting conditions and a
machining mechanism. The grinding process includes,
therefore, many factors related to malfunction and the
qualitative interactions between these factors cannot be
understood yet“‘zl. A burn of a workpiece is one of the
fault phenomena happened to the ground surface. It is
related to the thickness of an oxide layer, which is affected
by the maximum temperature at the cutting zone®.
Another trouble is a chatter vibration that is a relative
motion between the grinding wheel and the workpiece
during the operation!®., It is important to detect these
fault phenomena during the machining process.

The grinding power is often used as a parameter for
monitoring the grinding process. The power may also
be used to monitor the effects of dressing. Empirical
models are required to guide the selection of grinding

conditions. Chen'”! reported that the effects of grinding
conditions on grinding force and power was related to
the shape of the idealized chip thickness. It was found
that the grinding force and power could be related to
the dressing operation by considering the effective density
of cutting edges on the wheel surface. The semi-empirical
model developed in this paper could be used to predict
the variation of the grinding power during the wheel
redressing life cycle.

This paper proposes a neural-network-based fault
detection scheme. The scheme utilizes the static and
dynamic components of power parameters as the input
to the neural network. The relationship between the
change of parameters and the fault was also discussed.

2. Bad Effect of Fault Phenomena

Grinding process is often used for the final finishing
of a component because of their ability to satisfy strict
requirements of the surface roughness. However, in case
of the grinding fault generation, an allowable range of
the surface roughness is not maintained.

Grinding fault phenomena are affected by many
influential factors that are mainly classified into the
grinding condition, the grinding wheel, the dressing
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Fig. 2 Percentage of influential factors to chatter
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condition and the coolant. Fig. 1 describes a percentage
of influential factors about the grinding burn. It is seen
that the machining condition more affects the grinding
burn than others. Fig. 2 shows a percentage of influential
factors about the chatter vibration. The machining
condition and the dressing condition dominantly affect
the chatter vibration. This is known that if an adequate
dressing was not conducted before the grinding, the
grinding fault phenomena are easily generated. Moreover,
a correct selection of the machining condition is more
important about avoiding fault phenomena.

A burn of a workpiece is a kind of the irreversible
change at a micro-structure of the surface layer and it
is taken place under the action of a continuous high
temperature at grinding zone. An visual observation of
the burn is due to temper colors of very thin oxide layers
on the workpiece surface. These layers for ferrous
materials are mainly composed of Fe203, Fe304, and
FeO layers from free surface. At the onset of grinding
burn, a grinding force and a wheel wear rate increase
sharply, and a surface roughness deteriorates. The burn
of the workpiece often occurs, especially with adhesive
materials. Metals adhering between voids within a
grinding wheel block up a machining action. Therefore,
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Fig. 3 Relationship between a surface roughness and the
number of machined pieces.

the grinding process will be an abnormal state and the
grinding temperature is instantaneously arisen about
1,000C. As this effect of the arisen temperature, the
workpiece surface is burnt.

When a chatter vibration is generated on the ground
surface, the grinding process is under unstable state.
Chatter marks normal to the grinding direction may be
easily seen on the ground surface and a deterioration
of the surface roughness is evident. Fig. 3 shows a
relationship between a surface roughness and the number
of machined pieces. The values of the surface roughness
are slightly increased in normal state of grinding, but
rapidly increased when fault phenomena generate. It can
be seen in order to produce a satisfactory product that
fault phenomena, such as the bum and the chatter
vibration, must be detected in early stage and avoided
as much as possible.

3. Experimentation and parameter selection

3.1 Experimentation

An experimental setup is shown in Fig. 4. A series
of grinding tests were conducted on a cylindrical grinder
with a 228 mm diameter WA60LmV wheel that is mostly
occupied with a general purpose in workshop. Specimen
STD11 that is preferred to the die and the mold material
was tested. A power monitor with 10 kHz sampling
frequency was used to measure power signals during the
grinding process. An oscilloscope visualized power
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Fig. 4 Experimental setup for acquiring power signals
from an induced grinding motor.

signals obtained and pen recorder plotted signals. Signals
outrunning the power monitor were converted analog to
digital. Digitalized signals stored in a personal computer.

The stored signals were analyzed and they were
utilized for defining the power parameters that reveals
a cue of fault phenomena. For a constant infeed rate,
a stepping motor was attached in machine and a computer

Table 1 Experimental specifications and conditions

[tems Specifications and conditions
Grinding wheel Type : WA60LmV

Size . ¢228 X 24

Workpiece Material : STD11
Hardness : HrC 45~47
Wheel speed Vs = 27.1 m/s (1,800 rpm)

Workpiece speed Vw = 020 ~ 040 m/s

Infeed rate 0.5 mm/min
1.0 mm/min
2.0 mm/min

Cutting fluid Dry cut

Depth of cut : 0.015 mm

Dressin
essing Lead : 0.020 mm/rev

0.6 T T

o
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Fig. 5 An example of the grinding power signals in cases
of chatter and grinding burning.
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Fig. 6 Definition of the power parameters for detecting
fault phenomena.

controlled the motor. Experimental conditions used in
measuring power signals were listed in Table 1.

3.2 Parameter selection

Fig. 5 presents an example of the grinding power
signal generated in cases of chatter and grinding burning.
It shows that grinding power signals of chatter and
grinding burning differ each. Therefore it needs to define
the power parameters that make the detection of a grinding
state easy.

Fig. 6 shows a typical trend of a power signal changed
during the grinding process. In general, a grinding power
increases rapidly with the contact between the wheel and
the workpiece. It appears an initiative point of a grinding
cycle. After several times, the grinding power settles
down a certain level of the amplitude that is a static
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performance in the field of the speech, the image Fig. 7 Experimental results of power parameters
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recognition and the pattern classification. These neural
networks are composed of many non-linear computational
elements operating in parallel. Neural networks, because
of their massive nature, can perform computations at a
higher rate. Because of their adaptive nature using the
learning process, neural networks can adapt to changes
in the data and learn the characteristics of the input
signals.

The ability to learn is a fundamental trait of the neural
network. Although a precise definition of learning is
difficult to formulate, a learning in a neural network
means the finding an appropriate set of the weights that
are connection strengths from the elements to the other
layer elements. In this study, the back propagation
algorithm of neural networks that is one of the various
learning modes is used. This algorithm in the multi-layer
perceptron has made networks the most popular among
researchers and users of neural networks. For the purpose
of a pattern classification, the squared error cost function,
which has most frequently used in the neural network
and which has proven to converge into a small error
is defined as'”!

E—_—% lg 1 y(l)'“d(i) I 2 0

Where the superscript 7 is an zth input pattern. The
y and the d are a calculated output and a desired output
of this pattern. The back propagation algorithm is a
gradient descent method to minimize the squared error
cost function. The procedure of a learning in back
propagation algorithm can be summary as follows.

Step 1. Initialize the weights to small random values.
Step 2. Randomly choose an input pattern.
Step 3. Propagate the signal forward through the network.

Step 4. Compute 8" in the output layer (0;= y,-L)

o =g (h") Ldf =11 @)
Where A’ represents the net input to the ith

unit in the Lth layer, and g’ is the derivative
of the activation function g.

Step 5. Compute the deltas for the preceding layers by
propagating the errors backwards;

8i=g (i) w87 3)
for [=(L—1),....,1

Step 6. Update weights using
dwy=1 8 ;! “
Where 7 is a coefficient of the learning-rate
parameter.

Step 7. Go to step 2 and repeat for the next pattern until
the error in the output layer is below a
pre-specified threshold of a maximum number
of iterations is reached.

4.2 Neural network structure and results

According to the selection of a learning rate, the
performance of neural networks is widely different from
others. Therefore, it is necessary to optimize the neural
network with the correct learning rate. Through
preliminary study, the coefficient of the learning rate
was determined as a value of 0.6. In general, during
the learning process the squared error method with raw
power signals frequently fails down convergence, so the
squared error cannot converge on a smaller value. In
order to reduce easily the squared error, it is essential
to group input parameters with the several ranges. For
the purpose of reducing the squared error, grouping the
range of power parameters was achieved as listed in Table
2. It was made based on the preliminary experimental
data analysis According to this grouping, the neural
network understands any level value of power parameters
as the specified grouping value from 1 to 3.

Fig. 8 presents the architecture of the neural network
used. Input units were used the Ps, Pv, Pflu, and Ts
parameters of the power signal. Output units were
occupied as the normal(Oﬁ), the burn(Ob), and the chatter
vibration(Oc). Output units had interval values from 0
to 1. Through comparison with these output units after
network calculation, a unit of the output layer with the
major value means the state of the grinding process being.
Table 3 lists learning patterns for detecting fault

Table 2 Grouping power parameters for learning

Gi
roup | 5 3
Param.

P, - below 400 (w) 400~420 (w) over 420 (w)
Pnu below 50 (w) 50~80 (w)
P, below -30 (w) -30~30 (w)
Ts below 4 (sec)

over 80 (w)
over 30 (w)

4--12 (sec) over 12 (sec)
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Fig. 8 Structure of the neural network.

Table 3 Learning patterns for detecting faults from change
of power parameters

Input units Output units

Ts Ps Pﬂu Pv On Ob Oc
1 1 1 1 1 0 0
1 1 1 2 1 0 0
1 2 1 2 1 0 0
2 2 1 1 1 0 0
2 1 2 1 0 1 0
2 1 2 2 0 1 0
2 1 3 1 0 1 0
2 2 2 1 0 1 0
2 2 2 3 0 0 1
2 3 2 3 0 0 1
3 2 2 2 0 0 1
3 3 3 3 0 0 1

phenomena from the change of power parameters. For
the successful learning and the fault detection with a
learned neural network, the learning pattern were selected
carefully. Patterns for normal, burning and chatter
vibration were 4 each. If more learning patterns were
used, the error could not converge during the iterative
learning process.

Fig. 9 shows the squared error during the learning
process with grouping power parameters. As shown in

Fig. 9, the squared error converges on a small value
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Fig. 9 Convergence of the squared error during the
learning process.

Table 4 Recalled results with a learned neural network

Input units Output units

T, Py Pa Py On Oy O

i 1 1 1 0.972 0.001 0.001
1 1 1 2 0.984 0.001 0.001
i 2 1 2 0.971 0.001 0.098
2 2 1 1 0.987 0.001 0.002
2 1 2 1 0.031 0.955 0.001
2 1 2 2 0.017 0.954 0.172
2 1 3 1 0.026 0.918 0.072
2 2 2 1 0.024 0.999 0.019
2 2 2 3 0.012 0.116 0.969
2 3 2 3 0.016 0.002 0.999
3 2 3 2 0.015 0.001 0.997
3 3 3 3 0.013 0.001 0.996

and, therefore, the learning process was carried out well.
It means that this strategy for detecting the fault
phenomena is able to classify the grinding states.

Table 4 lists recalled results with a learned neural
network. When the value of output units was compared
with output value listed in Table 3, the fact that the
learning is well done may be seen.

Table 5 presents implementation results of a new
data set that is not learned at the previous step. The
symbol 0 means that the detection of the neural network
is true and the x is fault. Some erroneous detection
were made.
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Table 5 Implementation results of a new data set

Input units Output units

Result
Ts Ps Pm Py O, Op O
1 2 2 1 0877 0175 0.002 Normal O
1 2 3 1 0.865 0.168 0.265 Normal O
31 2 1 099 0.001 0.038 Normal {)
1 2 2 1 0.001 0.860 0.149 Burning )
1 3 2 2 0002 0776 0.242 Burning )
1 3 3 1 0.001 0975 0.173 Burning O
1 3 2 1 0001 0490 0.659 Chatter X
2 2 2 2 0002 0002 0993 Chatter O
2 2 3 2 0001 0028 0999 Chatter O
2 2 3 3 0001 0157 0.998 Chatter O
3 1 2 3 0.174 0.000 0.871 Chatter O
3 1 3 3 0001 0060 0938 Chatter O
3 2 2 3 0001 0002 0936 Chatter
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Fig. 10 Successful detection percentage according to
various layer structures.

Fig. 10 presents the successful detection percentage
according to various layer structures in the achieved fault
detection system. A few erroneous detections were made
in the boundary between the burn and the chatter
vibration. Nevertheless some erroneous results were
encountered, the performance of the fault detection was
good. From the Fig. 10, it is seen that the maximum
successful detection is about 95% when the layer structure
of a neural network is optimized.

4.3 Analysis on the influence of parameters
To improve the performance of a successful detection,
an analysis on the influence of power parameters to the
fault phenomena must be conducted. Therefore, from the
results of the experimentation and the detection system,

1

a relationship between the range of each parameter and
the fault phenomena was obtained.

Fig. 11 presents a percentage of the fault occurrence
according to a grouping region of power parameters. From
the results as shown in Fig. 10, it may be seen that the
grinding burn and the chatter vibration during the grinding
process can be effectively monitored through detecting
a change of the static power. In general, the grinding
burn was frequently generated at region 3 of the static
power but the chatter vibration was easily appeared at
region 1 as shown in Fig. 11 (a). It was seen that the
static grinding power either decreases due to the chatter
vibration which produces an increased rate of a bond
rupture or increases due to the grinding burn and wheel
loading. At this time, the grinding wheel has to be
redressed.

The dynamic power, in Fig. 11 (b), had the region
3 when the grinding burn and the chatter vibration were
generated. It means that the grinding state with the fault
phenomena is unstable much more and that the grinding
power is seriously fluctuated. The settling time and the
power variation were in the region 3 coinciding with
the occurrence of the fault phenomena as shown Figs.
11 {c) and (d). In view of the analysis results so far
achieved, the static power parameter is preferable to detect
the fault phenomena in grinding process and more effect
parameters should be sought to improve the successful
detection.

5. Conclusions

To detect the fault phenomena in grinding process,
a new technique using power parameters was applied.
Due to the fault phenomena, the trend of a surface
integrity deterioration was sharply occurred.

Power parameters such as the static power, the
dynamic power, the power variation and settling time
were determined for detecting fault phenomena. After
grouping power parameters, then they were used as input
units of the neural network. Through the learning process
of a constructed neural network, the squared error was
converged at a small value. As a performance of the
learned neural network, the maximum successful
detection was about 95% when the layer structure of

the neural network was optimized.
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The analysis on the influence of power parameters
wes conducted to obtain the relation between the power
parameters and the fault phenomena. The static power
was preferable to detect the fault phenomena in grinding
process.
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