International Journal of the Korean Society of Precision Engineering, Vol. 3, No. 1. January 2002.

Barycentric Approximator for Reinforcement Learning
Control

Whang Cho
Department of control and instrumentation, Kwangwoon University, Seoul, South Korea
ABSTRACT

Recently, various experiments to apply reinforcement learning method to the self-learning intelligent control of
continuous dynamic system have been reported in the machine learning related research community. The reports have
produced mixed resuits of some successes and some failures, and show that the success of reinforcement learning
method in application to the intelligent control of continuous control systems depends on the ability to combine proper
function approximation method with temporal difference methods such as Q-learning and value iteration. One of the
difficulties in using function approximation method in connection with temporal difference method is the absence of
guarantee for the convergence of the algorithm. This paper provides a proof of convergence of a particular function
approximation method based on "barycentric interpolator” which is known to be computationally more efficient than
multilinear interpolation.

Keywords: Reinforcement Learning, Q-learning, Barycentric Interpolation, Multilinear Interpolation

The fine grid method may be used when system's
1. Introduction order is low, i.e., of one or two dimensions. Above two
dimensions, fine girds are too expensive. Furthermore

Reinforcement learning algorithms generates the value functions can possess discontinuities, which
functions that map states to actions based on state value can lead to suboptimalities even with very fine
or state action value functions. When dealing with discretization in two dimensions.
continuous dynamic system, these functions must be Neural nets have been used in conjunction with
approximated by using proper approximator scheme temporal difference method™ and Q-learning ™! in very
based on discretized state and action space. high dimensional spaces'*®!. While promising, it is not

Several researchers have recently reported that some always clear that they produce the accurate value
classes of function approximators work better with fucntions that might be needed for fine near optimal
temporal difference methods than others. For example, control of dynamic systems, and the most commonly
some experimental evidences that linear functions of used methods of applying value iteration or policy
coarse codes, such as CMACs, can converge reliably for iteration with value function approximation with a
some problems are provided in . It is suggested in " neural-net often diverge, i.., unstable!™.
that online exploration of a Markov decision process can This paper provides a proof of convergence of a
help to concentrate the representational power of a temporal difference algorithm with barycentric value
function approximator in the important regions of the function interpolator. The algorithm will converge either
state space. Other than CMAC two frequently used when the decision process is discounted or undiscounted.
function approximators are fine grid method and neural Sufficient conditions for convergence to the exact value
net approach. function are also given, and the bound for maximum

33

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

error between the estimated and true value functions is
estimated.

2. Definitions and preliminary results

Some definitions and preliminary results are

introduced briefly in this section to facilitate the
exposition of the main result of this paper.
Definition: An affine combination of the points

{n eR}, 0<j<k,isapoint of the form

7’ = Zos;‘sk a!ﬂj

where a € R and Z

ey

0<j<k ai =1.

This definition is mathematically legitimate because
it can be recast as the sum of a point and a linear
combination of vectors.

Definition: A set of points {7, € R}, 0sj<k,
is called affinely the
{n, —n,} arelinearly independent for 0 < j <k.

independent when vectors
Definition: An affine subspace is the set of points
that can be expressed as an affine combination of points

from an affinely independent set.

Definition: A convex combination of points
{n e R"}, 0< j<k,isapoint of the form

n= Zl)sjsk aj”j (2)

where a >0 forall j and ZOSM a = 1.1

Definition: The convex hull of a set is the closure of
the set under convex combination.

Definition: The convex hull of points from an
affinely independent set U is a simplex.

Definition: Any state x € R* inside some simplex
made of points {7 eR"} for 0sjs<k is called
barycenter of the points and can be expressed as a
convex combination:

x=Zp(xln,)n, (3)

o<k

where Zmﬂp(x | n) s called barycentric
coordinate of x .

Definition: Let V(n,) be the value of a scalar

34

function V at the point 5, . Then the barycentric
interpolator of V at x is defined by

V= plxin)Viy)

0sj<k

S

Note that in the general case, for any given x , the
choice of a simplex which contains x is not unique,
and once a simplex is selected the choice of barycentric
coordinate p(x 15) is not unique if ¥ >n+1. Note
also that any n-dimensional hypercube can be broken
into n! simplexes according to the Coxeter-Freudenthal-
Kuhn triangulationm.

Definition: A function f from a vector space §
onto itself is a contraction if for any two points a and
b in §

I f@)-fb)li<alla-bll 5)
0<axl
is called nonexpansion if for any two points a and »
in §

where is called contraction factor. f

Il fla)- fp)N<iia—-bl (6)

Definition: A point x in a vector space S is
called a fixed point of the function [if f(x)=x.

Theorem 2.1 (Contraction Mapping): Let S be a
vector space with norm |It-Il . Suppose f is a
contraction on § with contraction factor @. Then f
has exactly one fixed point x" in S. And for any
initial point x , the sequence x , f(x), f(f(x),
... convergesto x .

Let S and A denote the state space and action
space, respective, of a Markov decision process. At any
given time ¢, the state of the system is denoted by
x, €8 and learning agent chooses an action a € A .
Then system transition occurs according to the transition
function racting on X, and a, and produces a next

state X

(41

€ § . §,denotes a distribution on S which
gives the probability of being in each state at time O.
The cost function ¢ measures how will the agent is
doing. At each time step ¢, the agent incurs a cost
c(x, ,a,) . The learning agent must act to minimize the
E{Zy'e(x ,a)}
is called the discount factor. The optimal

expected discounted cost where

y €[0,1]

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

value function is denoted by V'(x), which represents
the minimal possible expected discounted cost starting
from state x . Markov decision process is called
deterministic if the functions ¢(x,,a) and 7(x ,a)
are deterministic forall x, and a,.

There are several ways by which the existence of
Viix) is guaranteed. In a finite discounted Markov
decision process, it is sufficient to require that the cost
function ¢(x ,a) have bounded mean and variance for
all x and a. For a nondiscounted Makov decision
process to be of interest, it should have some set of states
G which is

system is in

absorbing and cost-free: that is, if the
G at time ¢, it should stay in G
thereafter and
Without loss of generality, all absorbing states are
assumed to be lumped to a single state indexed by 1. An
action selection strategy or policy is called proper if, no
matter what state it start from, following the strategy
that P(x, =1)>1 as A finite
nondiscounted Markov decision process have a well-

ensures t > .
defined optimal value function if the cost function has
bounded mean and variance, there exists a proper
strategy, and there does not exist a strategy which has
expected cost equal to —o from some initial state.
From now on, it is assumed that all Markov decision
process to be considered have well-defined V' and that
S, puts a nonzero probability on every state in S .
Given two Markov decision process M, and M,
which share the same state space S but have two
different action spaces A, and A, . respectively, a new
can be defined by the
composition of M and M, such that at each time

Markov decision process M
step the learning agent select one action from A, and
one from A,. The transition and cost function of the
composite M, defined
by 7,(x,(a;a)) =7,(z (x,a)a,) and
¢, (x,{a,a))=c(x,a)+yc(r(x,a))a).

defined
z:S —> A. A learning agent may follow policy = by

process are

A policy & is to be a function
choosing action #z(x) wherever it is in state x. It is
well known [9] that every Markov decision process with
a well-defined V' has at least one optimal policy 7 .
policy the
optimality equation

Optimal satisfies following Bellman's

V' (x) = E{cCe,z () + ¥ (z(x, 2 (0} ()

c(x,a)=0 forall xeG and acA.

3

and every policy which satisfies Bellman's optimality
equation is optimal.

There are two classes of learning problems for
Markov decision processes: online and offline. While in
offline case, learning agent is allowed to access the
whole process, including the cost and transition functions,
in online case only S and A are given to the agent
and actual data must be obtained by interacting with the
system. Online problem can be transformed into a offline
one by observing one or more trajectories, estimating the
cost and transition functions, and then pretending that
those estimates are true. Similarly, the offline problem
can be transformed into an online one by pretending that
cost and transition functions are not known.

For a finite Markov decision process, V' for any
xe S can be found by repeated application of the
following dynamic programming backup operation,
called value iteration, with any initial guess

V(x)e—miAnE{c(x,a)+yV(r(x,a))} ®)
ae

This operation can be generalized to allow parallel
updating where instead of merely changing the estimate
for one state at a time, the new value for every state is
computed before altering any of the estimates. The
following two theorems imply the convergence of this
new operation called parallel value iteration',

Theorem 2.2 (value contraction): The paraliel value
iteration operator for a discounted Markov decision
process is $ contraction in max norm, with contraction
factor equal to the discount factor. If all policies in a
nondisounted Markov decision process are proper, then
the parallel value iteration operator for that process is a
contraction in some weighted max norms. The fixed
point of each of these operators is the optimal value
function for the Markov decision process.

Theorem 2.3: Let a nondiscounted Markov decision
process have at least one proper policy, and let ali
improper policies have expected cost equal to —o for at
least one initial state. Then the parallel value iteration
operator for that process converges from any initial guess
to the optimal value function for that process.

3. Results for discounted Markov decision
process

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

Suppose that T is the parallel value backup operator for
a Markov decision process M . The basic value iteration
to be T(V) at i+1th iteration
starting from some initial guessV, and the iteration

algorithm sets V_
continues until either time is run out or v is
In the
algorithm V is usually represented by an array of real

considered to be sufficiently close to V.

numbers of dimension equal to the numbers of states in
S.

Now suppose that V is to be represented, not by a
lookup table, but by some other more compact data
structure such as a neural net. Then two difficulties are
First,
generally requires to examine almost every x in §

immediately confronted. computing T(V)
and if M has large enough space that it is beyond using
lookup table, computing V. is probably not affordable.
Second, even if V. can be represented by a neural net,
there is no guarantee that T(V,) can be represented by
a neural net.

To address both of these difficulties, let's assume
that there exists a sample X of states from M. X,
should be compact enough that each element of it can be
examined repeatedly. On the other hand it should be
large enough and representative enough that the states
in X can well characterizes the behavior of M . Now
let' s define an approximate value iteration algorithm.
Rather than setting V. to T(V), (T(V))(x) are
computed only for x e X and then a neural net (or
other approximator) is fit to these training values to
produce the function V.

In order to reason about approximate value iteration,
function approximation methods themselves will be
considered as operators on the space of value functions.

Definition: Suppose a function from a space § toa
vector space R is to be approximated. Fix a sample
vector X of points from §, and fix a function
approximator scheme A . For each possible vector Y of
target values in R, A will produce a function f
from S to R. Define ¥ to be a vector of fitted
values; that is, the ith element of Y will be f applied
to the ith element of X . Now define M, the mapping
associated with A, to be the function which takes each
possible Y toits corresponding Y.

Now we can apply the powerful theorems about
contraction mappings to the function approximation
MA

methods. In fact, it will turn out that if is a

36

nonexpansion in an appropriate norm, the combination of
A with value iteration is stable. In other words, under
the usual assumptions, the value iteration will converge
to some approximation of the value function. The rest of
this section states the required property more formally,
then prove that barycentric this

property.

interpolator have

Definition: Two operators M, and T on the
space S are compatible if repeated application of
M _oT is guaranteed to converge (0 some

x" e § from any initial guess x e§.

Note that compatibility is symmetric: if the sequence
of operators M, ,T ,MF , T, ...
, then

converges from any

initial guess x, €S so the
T M_.T M_,.. does.

Theorem 3.1 Let T, be the parallel value backup

sequence

operator for some Markov decision process M with state
space S, action space A, and discount factor y <1.
Let X =SxA.Let F be afunction approximator (for
R) with mapping
M, e0™ —>D'". Suppose M_ is a nonexpansion in
max norm. Then M _is compatible, and M, oT, has
contraction factor ».

proof: By the value contraction theorem, T, is a

functions from X to

contraction in max norm with contraction factor y. By
assumption M, is a nonexpansion in max norm.
Therefore M, 0T, is a contraction in max norm by the
factor y.

Corollary 3.1 The approximate value iteration
algorithm based on F converges in max norm at the
rate y when appliedto M.

It remains to show that barycentric interpolator A
defined in Eq. (4) is compatible with value iteration. The
barycentric coordinates involved in calculating the fitted
value l; may depend on the sample vector X . but
may not depend on the target values Y . More precisely,
forafixed X ,if Y has n clements, there must exist

n’ nonnegative barycentric coordinates B suchthat
V- i.:ﬁjy’ ©)
and
Z”: B, =1 (10)

Theorem 3.2 The mapping M, associated with

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

barycentric interpolator F is a nonexpansion in max
norm and is therefore compatible with the parallel value
backup operator for any discounted Markov decision
process.

proof: Fix all the g for F as in the above
definition. Let ¥ and Z be any two vectors of target
values. Consider a particular component i . Then,

M,)-M,(2)] |

= XﬂuY/ —Zﬁ'vzi

int jet

-12.(r-2)

=1

(11)
smax|Y - Z ||} 8,|=max|¥ - Z |
i P i
-l¥-z|
This implies that every clement of

[M,(¥)-M (2)] is no larger than |l¥-2z| .
Therefore, the max norm of [MF(Y)—MF(Z)] is no
MF

larger than |[¥-2|| . In other words, is a

nonexpansion in max norm.

4. Results for nondiscounted Markov decision
process

Consider now a nondiscounted Markov decision
process M . Suppose for the moment that all policies for
M are proper. Then the value contraction theorem states
that the parallel backup operator T, for this process is
a contraction in some weighted max norm |- ||, . The
previous section proved that if the A is a barycentric
interpolator, then M is a nonexpansion in unweighted
max norm. If it can be proved that M were also a
nonexpansion in ||-[i, , it can be said that M _ is
compatible with T, .

Fortunately,

w

barycentric interpolator s
compatible with nondiscounted Markov decision process.
The proof relies on the property of barycentric
interpolator. A barycentric interpolator can be viewed as
a Markov process, so that state x has a transition to
state y whenever ,Bv >0, i.e., whenever the fitted
V(x) depends on the target V(y). Let's view the
barycentric interpolator as a Makov process and compose
this process with our original Markov decision process to

37

derive a new Markov decision process.

Theorem 4.1 For a barycentric interpolator A with
mapping M,
M (either discounted or nondiscounted) with parallel
value backup operator 7, , the function T, o M, isthe
parallel backup operator for a new Markov decision
process M

and for any Markov decision process

M.

proof: Define new Markov decision process M as
follows: It will have the same state and action space as
M, and it will also have the same discount factor and
initial distribution. It is assumed without loss of
generality that state 1 of M is cost-free and absorbing:
if not, states of M can be renumbered starting at 2,
adding a new state 1 which satisfies this property, and
making all its incoming transition probabilities zero.
Suppose that, in M, action e in state x takes us to
state y with probability P, » and that A replaces
V(y) by Z, B V(z). Then the transition probabilities
in M forstate x and action a may be defined to be

Po=2p. B, =1 (12)

p.=2.p.8, (13)

These transition probabilities are well defined. Since

the barycentric interpolator A has the property that

2.B.=1,
IWIED DWW RSN A
=2p. 2B =2 p, =1

Now suppose that, in M, performing action a in
state x yields expected cost ¢_ . Then performing
action a instate x in M yields expected cost

(14)

E.=c +rXp B, (15)

Now the parallel value backup operator T, for
M’ s

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

V(x) = min E {¢'(x,a) + yV(8'(x,a))}

= min ZP:,- {c'(x,a)+V(2)}

= mﬂin[z {Z r.B. } {¢, +rv@}
+2,p.8,{¢, +rv}]

= min Z r. [Z B{e +v@}+ ,BﬂEﬂ:]
= min P {5,, + 72 ﬂ,zV(z)}

= min {Eu +r P, Zﬂ,,V(z)}

= min {cn + 72 p_B.+ yZ P, Zﬂ:ﬂnV(z)}

On the other hand, the parallel value backup operator
M is

(16)

for

V(x) = min E {c(x,a) + yV (5(x,a))}

17
= min me {",. +7V(y)} an

Replacing ¥V (y) by its approximation under A,
the operator becomes T, o M .

V(x)=minD p { +r2 ﬂJ(z)}
’ : (18)

= m.in I:c‘_ + 72 pm‘.ﬂ,.z + yz P, Z ﬂﬂV(z)]

which is exactly the same as T, given in Eq. (16).
Given an initial estimate V, of the value function,
approximate value iteration begins by computing
M (V,) . the representation of ¥, by using barycentric
interpolator A . Then it alternately applies T, and
M, to produce the series of functions V .,
M WV).M (M (,),... Inanactual implementation,
only the function M (-) would be represented
explicitly while the function T, (-) would just be
sampled at the points X . On the other hand, exact
value iteration on M produces the series of functions

V. T,oM (V). T, oM (T, oM (¥,), This

38

series obviously contains exactly the same information as
the previous one. The only difference between the two
algorithms is that approximate value iteration would stop
at one of the function M (-), while iteration on M
would stop at one of the functions T, ().

5. The online problem and Q-learning

The results of the previous sections may carry
over directly to a gradual version of the parallel value
backup operator

V(x) « a_min E {c(x,a) + yV ((x,a))}

aed

(19)

in which, rather than replacing V(x) by its
computed update on each step, a weighted average of the
old and new values of V' (x) can be taken. The weights
a_ may differ for each x, and may change from
iteration to iteration. In other words, a derived Markov
decision process M can be constructed and gradual
value iteration can be performed on it, and gradual value
iteration on M is still the same as gradual approximate
value iterationon M .
The results also apply nearly directly to dynamic
programming with Watkins's Q-learning algorithm. The
Q' is defined by

Q' (x,0)0 E {c(x,a)+ 7V (5(x,a)} (20)

and Q-learning operator is defined by
Q(x,a) « auE{c(x,a) +y min Q(5(x,a),a')} 1

where the learning rate «_ may be random variable,
and may depend for each step not only on x and a
but also on the entire past history of the agent's
interactions with the Markov decision process, up to but
not including the current values of the random variables
c(x,a) and &(x,a).Thatis, the behavior or the exact
algorithm on the derived Markov decision process can
still be defined so that the behavior of the approximate
algorithm on the original Markov decision processs is the
same as the behavior of the exact algorithm on the
derived Markov decision process. The derived Markov
decision process is, however, slightly different from the

derived Markov decision process for value iteration.
The previous discussion imply that, if some

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

transitions can be sampled at will from the derived
Markov decision process, gradual Q-learning can be
applied to these transitions and a policy can be learned.
The convergence of this algorithm would be guaranteed,
as long as the weights a@_ were chosen appropriately,
by any sufficiently general convergence proof for Q-
learning "1

Unfortunately, Q-learning is designed to work for
online problems, where the cost or transition functions
are unknown and transitions are only sampled from our
current state. The power of the approximate value
iteration method, on the other hand, comes from the fact
that the transitions from a certain small set of states are
So,
process for Q-learning will still have only a few relevant

of interest. while the derived Markov decision
states, it is not in general possible to observe many
transitions from these states, and so the approximate Q-
learing iteration will take a long time to converge.

There are two ways in which the approximate Q-
learning algorithm might still be useful. The first is the
case where a problem defined somewhere between
online and offline is encountered: any transition can be

sampled at will, but the cost or transitions functions are
not known a priori or the necessary expectations can't be
computed. In such a problem the value iteration can't be
utilized, since it is difficult to compute an unbiased
estimate of the value iteration update, so the approximate
Q-learning algorithm is helpful.

The second case where the approximate Q-learning is
useful is the case when possible lack of convergence still
be acceptable. Suppose our function approximator pays
attention to the states in the set X . If it is pretended
that every transition observed from a state x ¢ X is
actually a transition from the nearest state x' e X o
then enough data to compute the behavior of the derived
Markov decision process on X, may be obtained.
Unfortunately, following this approximation is equivalent
to introducing hidden state into the derived Markov
decision process. So the risk of possible divergence may
be confronted.

6. Experiments

This section provides some experiments done with

Fig. 1 The puddle world problem

¥

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

Markov decision problem from U2,

6.1 Puddie world

In this world, the state space is the unit square, and
the goal is the upper right corner. The agent has four
actions, which move it up, left, right, or down by 0.1 per
step. The cost of each action depends on the current
state: for most states, it is the distance moved, but for
states within the two "puddles,” the cost is higher. See
Figure 1. For a function approximator, a barycentric
interpolator is used and defined as follows: 1o find the
predi

at a point (x,y), fistt find the points of the simplex
which contains (x, y). Find the barycenter of the point
{x,y) by calculating the barycenter coordinate of the
point. Figure | shows the cost function for one of the
actions, the optimal value fanction computed on a
100 x100 grid, an estimate of the optimal value
function computed with bilinear interpolation on the
corners of 3 7x7 (ie., on 64 sample point), and the
difference between the two estimates. Since the optimal
value function is nearly piecewise linear outside the

Fig. 2 The car on the hill problem

40

Whang Cho ; International Journal of the KSPE, Vol. 3, No. 1.

much better outside the puddles: the root mean squared
difference between the two approximations is 2.27 within
one step of the puddies, and 0.057 elsewhere. The lowest
resolution grid thar beats multilinear interpolation's
performance away from the puddle is 20x20. But even
a 5x 3§ grid can beat its performance near the puddles.

In the Figure 1, the cost of moving up, the optimal
value function as seen by a 100X 100 grid, the optimal
value function as seen by bilinear interpolation on the
corners of a 7X 7 grid, and the difference between the
two value functions are shown, respectively, from the top
left and clockwise sense.

6.2 Car on a hill

In this experiments, the agent must drive a car up to
the top of a steep hill. Unfortunately, the car's wmatar is
weak: it can't climb the hill from a standing start. So, the
agent must back the car up and get a running start. The
state space is [-1,1)x[-2,2], which represents the
position and velocity of the car; there are two actions,
forward and backward. The cost function measures the
time spent until car reaches the goal.

There are several interesting features to this problem.
First, the value function contains a discontinuity despite
the continuous cost and transition functions: there is a
sharp transition between states where the agent has just
enough speed to get up the hill and those where it must
back up try
approximators have trouble representing discontinuities,

and again. Since most function
it will be instructive to examine the state space near the
goal through which all optimal trajectories must pass. So,
excessive smoothing will cause errors over large regions

of the state space. Finally, the physical simulation uses a

fairly small time step, 0.03 seconds, so it is necessary to
use fine resolution for the function approximator just to
make sure that a barrier is not introduced.

The results of the experiments appear in figure 2. For
a reference model, a 128x128 grid is fitted using
barycentric interpolater. While this model has 16384
parameters, it is still less than perfect: the right end of the
discontinuity is somewhat rough. Two smaller grids are
also fitted, one 64x64 and one 32x32. As the
difference plots show, most of the error in the smaller
models is concentrated around the discontinuity in the
value function. Near the discontinuity, the barycentric
approximator performs better than the multilinear models.
But away from the discontinuity, the multilinear model
outperforms. The 32x32 multilinear model also beats
the corresponding barycentric approximator model at the
right end of the discontinuity: the car is moving slowly
enough here that the barycentric approximator thinks that
one of the actions keeps the car in exactly the same place.
The multilinear model, on the other hand, since it
smooths more, doesn't introduce as much drag as the
barycentric approximator model does and so doesn't have
this problem. The root mean squared error of the
64 x64 grid (not shown) from the reference model is
0.019 seconds, and of the 32x32 grid is 0.336 seconds.
All of the above models are fairly large: the smallest one
requires to evaluate 2000 transitions for every value
backup. Figure 3 shows what happens when a smaller
model is attempted to fit. The 12x12 grid is shown
after 60 iterations, which is in the process of diverging
because the transitions are too short to reach the goal {
rom adjacent grid cells.

The result of the approximation to the value function

41

Two smaller models for the car on the hill problem

Whang Cho : International Journal of the KSPE, Vol. 3, No. 1.

for the car on the hill problem is shown in Figure 2.
From the top in clockwise sense, the reference model, a
32 X 32 multilinear grid model, a 32 X 32 grid
barycentric approximator model, the error of the 32 X 32
multilinear grid model, and the error of the 32 X 32 grid
barycentric approximator model are depicted. In each
plot, the horizontal axes represent the agent's position
and velocity, and the vertical axis represents the
estimated time remaining until reaching the summit at
x=06.

Figure 3 shows two smaller models for the car on the
hill problem: a divergent 12 X 12 grid, and a convergent
nearest neighbor model on the same 144 sample points.

7. Conclusions

We have proved the convergence of approximate
temporal difference methods based on barycentric
approximator, and shown experimentally that these
methods can solve Markov decision process more
efficiently than multilinear approximator of comparable
accuracy. Unfortunately, many popular function
approximators, such as neural net, linear regression, and
CMAC s, do not behaves like barycentric approximators
or multilinear approximator. The chief reason for
divergence is exaggeration: the more a method can
exaggerate small changes in its target function, the more
often it diverges under temporal differencing. Hence,
further research on the convergent behavior of the

various exaggerating approximator needs to be done.
Acknowledgements

This paper was accomplished with Research Fund
provided by Korea Research Foundation, Support for
Faculty Research Abroad.

References

1. J. C. Santamaria, R. S. Sutton, and A. Ram,

"Experiments with Reinforcement Learning in
Problems with Continuous State and Action Spaces,"
COINS Technical Report 96-088, Dec. 1996.

2. R. S. Sutton, "Learning to predict by the methods of
temporal differences,” Machine Learning, 3(1):9-44,

1988.

42

3. C. J. C. H. Watkins,
rewards,” Ph.D thesis, King's college, Cambridge,
England, 1989.

4. G. Tesauro,
backgammon program,” IN IJCNN Proceedings 1II
pages 33-39, 1990.

5. A. G. Barto, and R. S. Sutton, "Reinforcement

The MIT Press,

"Learning from delayed

"Neurogammon: a neural network

Learning: An Introduction,”
Cambridge, Massachusetts, 1998.

6. R. H. Crites, and A. G. Barto, " Improving elevator
performance using reinforcement learning,”
Advances in Neural Information Processing Systems:
Proceedings of the 1995 Conference, pp. 1017-1023.
MIT Press, Cambridge, MA.

7. 1. A. Boyan, and A. W. Moore, "Generalization in
reinforcement learning: safely approximating the

"

value function," Advances in Neural Information
Processing Systems, volume 7. Morgan Kaufmann,
1995.

8. D. W. Moore, "Simplical Mesh Generation with
Applications,” PhD. Thesis. Report no. 92-1322,
Cornell University, 1992.

9. D. T. Bertsekas, and J. N. Tsitsiklis, "Parallel and
Distributed Computation: Numerical Methods,"”

Prentice Hall, 1989.

. T. Jaakkola, M. 1. Jordan, and S. P. Singh, "On the

of
programming algorithms,"
6(6):1185-1201,1994.

11. 1. N. Tsitsiklis,
approximation and Q-learning," Machine Learning,
16(3):185-202, 1994.

12. . A. Boyan, and A. W. Moore, "Generalization in

reinforcement learning: safely approximating the

convergence stochastic iterative dynamic

Neural computation,

"Asynchronous stochastic

value function,” Advances in Neural Information
Processing Systems, volume 7, Morgan Kaufmann,
1995.
.A. W. Moore, "Variable
programming: efficiently learning action maps in
Machine
Learning: Proceedings of the eighth international

resolution dynamic

multivariate real-valued state-spaces,”

workshop, Morgan Kaufmann, 1991.

