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ABSTRACT

The Z-map is a special form of discrete non-parametric representation in which the height values at grid points
on the xy-plane are stored as a 2D array z[i,j]. While the z-map is the simplest form of representing sculptured
surfaces and is the most versatile scheme for modeling non-parametric objects, its practical application in industry
(eg, tool-path generation) has aroused much controversy over its weaknesses, namely its inaccuracy, singularity (eg,
vertical wall), and some excessive storage needs. Much research on the application of the z-map can be found
in various articles, however, research on the systematic analysis of sculptured surface shape representation via the
z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map
model, exact (within tolerance) z-map representation of sculptured surfaces which have some feature-shapes such
as vertical-walls and real sharp-edges by adopting some complementary z-map models, and some application examples.
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The z-map model is a special form of the
1. Introduction non-parametric surface in which the height values at grid
points on the xy-plane are stored as a 2D array z[i,j]
In general, the surface model for CAD/CAM is (Eq. 2 & Fig. 1).
categorized into ‘parametric’ and 'non-parametric’

surfaces. The NURBS (Non-Uniform Rational B-Spline) Z[i,j] with x=x,+dy + i and y=yet+dy - j. 2)
model is one of the common mathematical forms for where, dy, d, : grid-interval along x and y,
the parametric surfaces, while the non-parametric surface Xo, Yo : origin of the xy domain.

models such as polyhedral facet'!, z-map”*, and

dexel™ are widely used. Each mathematical form has zA

its own strengths and weaknesses depending on specific z[i,j]

applications!”. The parametric surface is a very efficient ’ Y

tool for use in various areas (ie, design, drawing, etc),
but in some specific geometric computations (eg,
Cartesian tool-path generation, etc) the non-parametric
surface is a more effective one'®.

The non-parametric surface is generally defined on

a two-dimensional xy domain, and can be represented

by an explicit form as follows: .
X
z =7 xy) (M Fig. 1 Z-map model
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Considering the height values (z values of a surface)
of a z-map at any (x,y) position, we can directly obtain
the height value from Z[i,j] if the (x,y) position falls
on a pre-defined grid-point (i,j) which comes from the
equation (3). The height value should be computed,
however, by some appropriate interpolation method if
the (x,y) position is located outside any grid-point (ie,
within a rectangular-cell or on a grid-line).

i = (xx)/dx and j = (y-yo)/dy 3)
The z-map model is widely used for NC tool-path
[4.6.9-12], CAPP
planning)m‘”], and NC tool-path generation”"s"s]. It can

verification (computer-aided  process

be said that the z-map model itself is conceptually similar

to the z-buffert™

depth-mapp” from a range finder™ in robot vision.

in the computer graphics area, or

It is generally accepted that, mainly due to its simple
data structure, a z-map is a good representation scheme
in terms of modification of surface’™ (eg, offsetting,
blending) and robustness of computation. On the other
hand, it should be pointed out that de facto infeasible
memory requirement and computation time (in case of
a high accuracy) may be one of its drawbacks. For
example, roughly 1.6GB of memory is required if one
needs 0.05 unit of precision (ie, grid-interval = 0.05)
for the xy-domain of 1000x 1000 units (ie, 4% 10°
grid-points total, 4 bytes for each grid-point), which leads
to the conclusion that a pure z-map is not a practical
solution for modeling a very accurate shape with a large
xy-domain.

There are practical restrictions on representing some
special feature shapes (eg, vertical walls) of the die
part-surface with accuracy, while it might be possible
for a z-map to model a smooth surface to a certain degree
of precision (see section 2). The following are some
feature shapes that are difficult or impossible for a simple
z-map to handle with ease (see Fig. 2):

® undercut-shape,
® vertical-wall,
e sharp-edge.

The 'undercut-shape' can be modeled by another
extended form of the z-map model (eg, dexel), which
we do not consider in the paper. In addition, the
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'vertical-wall' feature type contains a nearly vertical (very
steep) wall area as well as a completely vertical one.

Fig. 2 Arduous feature shapes in the z-map model

In the paper, representation of surfaces by the simple
z-map form and representation of feature shapes on die
part-surfaces by some extended z-map forms will be
presented. Section 2 deals with the conversion of
compound parametric surfaces to the z-map model, and
a reasonable z-value interpolation scheme on a z-map.
The following section suggests some extended z-map
models based on the simple z-map, which can represent
'vertical-wall' and 'sharp-edge’ features with accuracy.
Also, some illustrative examples are shown in section
4,

2. Shape representation by a z-map

The conversion of a parametric surface to a z-map
Z[i,j] is performed by computing the height value at each
grid-point (i,j). Once we have the z-map on hand, one
of the most important operations becomes retrieval of
the shape information, that is, a z-value computation of
the surface z=f(x.y) at any given (x,y) position. It is a
very simple job to get a z-value at an (x,y) position that
corresponds to a grid-point (i,j), which should be Z[i,j].
On the other hand, if an (x,y) position does not fall onto
any pre-defined grid-point, an appropriate interpolation
method should be used to get the z-value, where we
have the surrounding grid-points' z-values. Supposing that
the overall surface shape is smooth and has neither
vertical-walls nor sharp-edges, we can observe that there
is little difference between the interpolated z-value and
its accurate one. This restricted case makes it possible
for a simple z-map to represent the surface shape with
accuracy to a certain degree.
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2.1 Conversion of a parametric surface to a
Z-map

The conversion of a parametric surface to a z-map
form - i.e., the computation of z-values at the pre-defined
grid-points (see Fig. 3) - can be performed by use of
differential geometry called 2D Jacobian Inversion”! as
well as by faceting of the input surface. The former
method, in general, can converge to a unique solution
as long as the surface is smooth, but in some cases it
may fail or take too much time to arrive at a solution.
On the other hand, the facet (eg, triangular polyhedra)
of the input surface can be more robust (stable), which
enables one to estimate the z-value at an (x,y) position
directly from the corresponding triangle. However, the
facet is an approximated form to the input surface (within
a given tolerance), leading to local flatness or unsmooth
transitions. Therefore, the 2D Jacobian inversion is tried
first, and in case it fails, facets of the input surface are
used to construct the z-map.

In general, the part-surface of a stamping-die is
composed of as many as hundreds or thousands of faces
(trimmed parametric surfaces). Given the xy-domain and
grid-points of a z-map for the part-surface, each face
of the compound surfaces is positioned on the domain
and the z-value (at each grid-point) corresponding to the
face is computed and stored at Z[i,j] by the method
described earlier. In this paper the z-map converted from
the input part-surface is named 'Master-model z-map'.

Parametric Surface
YV

Fig. 3 Z-value computation at pre-defined grid-points

2.2 Interrogation of a z-value at any domain
position
As mentioned before, for any domain position (x,y)
which happens to fall onto a z-map grid-point (i,j) we
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can directly get its z-value from Z[i,j] by equations (2)
and (3), while some interpolating scheme should be used
for any other (x,y) position located out of a grid-point
(ie, out of a small circle centered at the grid-point with
a small radius). The z-value at (x,y) outside the overall
z-map domain is undefined.

Now that the information on hand is four z-values
at the grid-points surrounding the domain position (x,y)-
like g2,23,86,27 bilinear
interpolation may be one simple way to evaluate z-values.

in Fig. 4, rectangular
It may, however, result in an erroneous evaluation in
the case of a non-planar surface area. Considering that
any 'local' shape of CAD surfaces can be well
approximated by a cubic equation, we suggest an
interpolating method which utilizes the non-parametric
cubic Bezier curve form™*,

Suppose that a domain position P=(x,y) is located
in a rectangular cell (xi€ X< X1, i€ y< yju) of a z-map
Z[i,j] (0= i<m, 05 j<n) as shown in Fig. 4, whose relative
position (%, v) within the cell is obtained from the equation

.

= (X-X)/(Xin1=Xi) ; V= (¥-yi)/(¥i+1-y;) 5. 0<uv<1 (4)
where, xi < x < xpyand y; <y <y

Fig. 4 Z-value interpolation for non-grid point

Let us define W, and W, from the x-directional
grid-points (g;,g2,83,84) and (gs,gs,27,gs) as follows (see
Fig. 4), where each component z; comes from the z-value
of a grid-point g;:

Wi = (z1,22,23,24) and W2 = (25,26,27,25).

With Wy and W; at hand, we can define the control
points of two non-parametric cubic Bezier curves: {Vj
= (Vo,V1,V2,v3); k=1,2}. Eq. (5) evaluates the control points
for k = 1 from W,, those for k = 2 can similarly be
obtained.
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Vo = Z3, V3 = Zs,
vi = vors dy/3, v = vy - t-d/3, (5)
where, d, = x-directional grid-interval,

s = slope of the circular tangent at g; (from z,,
22 23),
t = slope of the circular tangent at gi (from

z3, 23, Z4).

Each non-parametric cubic Bezier curve is defined by
Eq. (6) from the control points (vo,vi,v2,v3), and the height
value corresponding to the relative position (#) in Eq.
(4) can be computed as o . Letw ; and o ; be two height
values at «# from V; and V,, respectively.

w(u) = ZO v, B w), 0=ux1

6
wheve, v; = Bezier curve's control pointg )
Bi(w) = Cubic Bernstein polynomial,
Now, for the y-directional grid-points (ge,22,86,810)

and (gi11,83,87.812), the height values at g's are defined
as W3 and W, as follows:

W; = (29,22,26,210) and Wy = (211,23,27,212).

Fromw 1,® > and W3, we define another set of control
points V3 = (vo,vi,v2,v3) of a non-parametric cubic Bezier
curve by Eq. (7). Also V4 can be obtained similarly.

Vo = O,

v) = vots-dy/3, vi=vs - t-dy/3,

where, d, = y-directional grid-interval,
s = slope of the circular tangent at g2 (from

Vi = W2,

M

29, 22, Zo),
t = slope of the circular tangent at gs (from

23, 26 Zi)

V3 and V, define two non-parametric Bezier curves
(Eq. 6), and height values v 3 and o 4 at the y-directional
relative position (v in Eq. 4) are calculated by Eq. (6).
The height value Z, at the domain position P (Fig. 4)
is finally computed by the following linearly blended
function:

Zp=(1‘ u)' w3+ u w4
When P happens to be in a rectangular cell which
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is located on the boundary of the z-map domain, those
12 grid-points (as shown in Fig. 4) cannot be defined,
but is resolved by adding 'dummy’ grid-points to construct
a complete set. As an example, let z-map indices of Po
(see Fig. 4) be (i = 0, 0 < j < n). Then we define two
additional grid-points at (i-1, j) and (i-1, j+1), where the
height values of those pseudo grid-points are obtained
by linear extrapolation of Z[i,j], Z[i+1,j] and Z[i,j+1],
Z[i+1,j+1], respectively.

Table 1 and Fig. 5 show some illustrative examples,
in which the suggested interpolating scheme is compared
with the ordinary bilinear interpolation - the difference
between interpolated z-values from z-map and 'accurate’
z-values of the analytic surface.

Table 1. Ilustrative results of z-value interpolation for
a domain-point

. . grid- Max. deviation (z-value)
Surface equation interval
(de=dy) A* B**
2+ + 24 =100% 270 ! +3.0x107%| —3.7x107*
2z = 100 - sin{z x/180) 1 +1.2x107%| +3.8x107°
z = 1000 - sin(xx/180) ! +2,1x107"| +3.8x10°°

* Non-parametric Bezier interpolation method

** Bi-linear interpolation method

(b) Surface: x2+yz+z2 =100% z > 70
Fig. 5 Magnified error pattern for z-value interpolatiol

According to the test, and considering that ordinar
machining tolerance (accuracy) falls in the range of 10
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to 102mm, it is possible to represent a smooth shape
(G'-continuous, without vertical-wall nor sharp-edge) by
a simple z-map whose grid-interval is less than 1mm (eg,
0.7mm).

3. Shape representation by extended z-map
models

Due to some special features such as sharp-edges
(SE) or vertical-walls (VW) on part-surfaces of mold
& dies, the simple z-map may not be an appropriate
form (see Fig. 6). We suggest two extra z-map models
which can represent SE and VW feature shapes within
a given error value: CZ-map (Core Z-map) and EZ-map
(Extended Z-map).

. vertical / steep walls

A
- P R 4
X dy
- sharp edges
z4
> R
X dy

Fig. 6 Wrongly-defined feature shapes in the z-map model

3.1 CZ-map model

This model is conceptually similar to a real 'core’
part in molding die manufacturing. The overall shape
is modeled by a simple z-map with practical (ie,
0.5~1mm) grid-intervals (base z-map), and additional
'core’ z-maps (CZ-maps) with smaller grid-intervals (§
and § ) are inserted at the local areas of SE or VW
feature shapes (see Fig. 7). Each CZ-map basically has
the same data structure as a z-map, which enables the
CZ-map to inherit the merits of the z-map model.

The two-dimensional domain of a CZ-map is defined
from each line segment of the feature-curves on a base
z-map (see Fig. 7-a). Also, we try to minimize the number
of CZ-maps on a base z-map by defining the local

coordinate frame of each CZ-map - the rotation-angle
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(® ) and the origin's position (see Fig. 7-b). There are
two types of feature-curves: VW (Vertical-Wall) curves
which are traced out on the base z-map, and SE
(Sharp-Edge) curves found from boundary edges of the
input parametric compound surfaces. Construction of a
CZ-map can be performed by the method described earlier
(8 2.1).

The grid-intervals of a CZ-map are selected as
follows;

& y = given tolerance value,

6=k &, k21,

where § » < dr and § ;. < d,

where the direction orthogonal to the feature-curve
segment has a smaller grid-interval (§ ,) since the feature
shapes should be represented mainly by the CZ-maps'
y-directional grid-points. We selected the value of k such
that the y-directional deviation of a feature-curve
traveling through a CZ-map domain should be equal to
or less than § , when the x-directional one is § «. Let
6 «betand =86 /& = 1/k, where O , is the maximum
angle between the feature-curve and the local x-axis of
a CZ-map domain. Setting 6 , to be a certain value,
we can get the value of £ from the above equation. In

the case of 8 x = + 20°, we get k = 1/tan20° = 3. Due
to the different grid-intervals along the local x- and y-axis
(6 « and § ), the additional memory requirement may
be minimized.

The following procedure describes the construction
of a set of CZ-maps based on a Master-model (base)
z-map Z[ij].

Procedure Construct CZmap (S , Z[ij] ,& .=
CZ-map) ;

1. Input: Trimmed parametric surfaces S, Z-map
z[ij) ;

2. Trace 2-D VW feature-curves from Z-map —
{Li; i=l,...m} ;

3. Trace 2-D SE feature-curves from S— {L;
i=1,..,m} ;

4. For i = 1 to m, do following:
1) Define a series of CZ-map domains for L; —
{Dy; j=1....p} ;
2) For j = 1 to p, compute z-values for the
grid-points in each domain Dy — CZ ;

5. Return a set of CZ-map {CZ} ;

Since a CZ-map on a base z-map should be more
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precisely defined, evaluation of the z-value at a domain
position (x,y) gives a better result on a CZ-map (CZ,)
than on its base z-map as long as (x,y) is located within
the domain of CZx. The evaluation is performed by the
method described earlier (§ 2).

CZ-rpap domain

feature-curves 4
/

b
L

-

(a) Feature lines and CZ-map domain  (b) Construction of a CZ-map

CZ-map grid-point
% p grd-pol

ZT7$ >

X CZ-map
(c) Vertical-view of a CZ-map

(d) 3D-view of a CZ-map
Fig. 7 CZ-map (Core Z-map) model

3.2 EZ-map model
The EZ-map (Extended Z-map) model, where each
designated grid-edge (ie, a segment between two
consecutive grid-points) of a base z-map has additional
grid-points (e-map points), also can locally enhance the
modeling accuracy (see Fig. 8). Those grid-edges which
should have e-map points can be selected by tracing out
the feature-curves as in the previous section and defining
the feature areas along the feature-curves. The e-map
points on a grid-edge are uniformly located (see Fig.
8-a & b), each of which contains the corresponding
z-value of the input part-surface (see Fig. 8-c & d).
The two-dimensional distance between e-map points
(ie, & x and § ) can be selected by considering a given
machining tolerance which, in general, should be in the
range of 0.01~0.05mm for mold & die manufacturing.
Construction of an EZ-map can be described as follows:
Procedure Construct EZmap (S, Zl[ij], =
EZ-map) ;
1. Input: Trimmed parametric surfaces S, Z-map
Z[ijl;
2. Trace 2-D SE feature-curves from S — {L;};
3. For all ij-th horizontal & vertical grid-edges
(Ex & E,), do following:
) If (slope of Ex =

€

€ ;) or (Ex crosses any
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L), define e-map points on Ex — {EZ[i,j](k];
k=0,..,n} ;

2) If (slope of E, = ¢ .) or (Ey crosses any
L;), define e-map points on E, — {EZ,[ij][k];
k=0,..,n} ;

4. Compute all z-values of e-map points from S ;
5. Return EZ-map ;

<. OX ‘,/1[".7] ,,,,,,,,, |
4 4 T
By . _ -
. ¢dy j - +
1 & i
,7 E-map point . ; i

(a) Definition of E-map points  (b) 2-D view of EZ-map

4 E-map point

2{ij]

3 4

e L N

¥
— ’”7 T \ o
X
(d) 3-D view of EZ-map
Fig. 8 EZ-map (Extended Z-map) model

(c) Sectional view of EZ-map

Since not all the grid-edges have e-map points, it
can be said that the additional memory requirement of
a EZ-map is less than that of a set of CZ-maps for a
same part-surface (from a few tests).

To evaluate the z-value at a domain position P=(x,y)
the simplest way may be to combine the four grid-edge
curves (point sequences) surrounding P into a cubic
surface patch (eg, bi-cubic Coons patch) with a
rectangular topology. In some cases, however, a one-patch
model may give an incorrect result when any of the
grid-edge curves is not G'-continuous (ie, sharply bent)
or has an abrupt change in curvature values locally. In
this case it is necessary for the patch to be subdivided
for more accurate interrogation.

4. IMNustrative examples

This section describes the EZ-map construction for
two die-surface models. Fig. 9 shows the EZ-map
construction for a partial connecting-rod, and a passenger
car fuel tank model case is shown in Fig. 10. Those
cases have no SE (sharp-edge) feature shapes, and the
summarized results are found in Table 2.
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(a) Part-surfaces (b) Master-model EZ-map

(¢) Master-model EZ-map {magnified) (d) E-map points on z-map grid-edges
Fig. 9 Application example: Connecting-rod(partial)

(a) Part-surfaces {b) Master-model EZ-map

Fig. 10 Application example: Passenger car fuel tank

Table 2. Summary of EZ-map construction for two

example models

Model Connecting-rod Fuel-tank
XY-dimension {mm) 110120 1190 = 890
Grid-interval | Z-map 0.4 0.8
(mm) E-map 0.02 0.04
Z-map 330 6,620
Memory y 5
(KB) E-map 1,120 8,000
EZ-map 1,450 14,620
E-map ratio (%) 17.8 6.3

The grid-intervals (d.=d,) of the two Master-model
(base) z-maps are 0.4 and 0.8, respectively. E-map points
are distributed on each grid-edge at regular intervals;
0.02 and 0.04, respectively for the two cases (ie, the
number of e-map points on each grid-edge is 19).

Considering the passenger car fuel tank model, we
need approximately 2.2 times the memory for
constructing the EZ-map (14.62MB) as compared with

the base z-map (6.62MB) (see Table 2). It may be
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meaningful to note that roughly 2.6GB of memory is
needed to construct a simple z-map whose grid-interval
is 0.04 (e-map points' interval).

The 'e-map ratio' in Table 2 means the number of
grid-edges to that of all grid-edges of the base z-map.
It can be noted that the connecting-rod model has a higher
value than the fuel tank model, since the former has
more VW (vertical-wall) feature area than the latter does.

5. Conclusions and discussions

We analyzed the modeling power of the simple z-map
model, and suggested two extended z-map models which
can more precisely represent feature-shapes such as VW
(vertical-wall) or SE (sharp-edge). It may be, in some
cases, practically infeasible for a simple z-map to
represent those feature shapes with accuracy (ie, very
small grid-intervals leading to huge memory needs).

Z-MASTER™, a commercial CAM system which
has been developed by the authors, adopted the EZ-map
model tool-paths
stamping-die machining. In terms of memory and

to generate finish-cut NC for
accuracy requirements, it is practically feasible to use
mold & die

manufacturing. Actually, due to some strengths, the z-map
[8}

those extended z-map models for

model is widely used in many areas such as the
following:

NC cutting simulation & verification,
Rendering,

Virtual prototyping and styling,

NC tool-path generation,

CAPP, computer vision.

The paper focuses on a practical method of
overcoming the accuracy enhancement while maintaining
the basic structure of the simple z-map model. Though
it is still versatile, the z-map may be the most appropriate
mathematical model for NC cutting simulation and
verification of a die part-surface. It should be noted,
however, that a very accurate modeling scheme is
necessary for a part-surface with VW or SE features to
etc) after the
cutting-simulation. As shown in the paper, a simple z-map

be verified (eg, overcut, collision,

is not a good choice for such featured shapes, mainly
due to extreme memory and computation time. As a
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concluding remark, the extended z-map models, while
still maintaining the basic data structure of a z-map, can
be feasible alternatives to the simple z-map model.
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