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ABSTRACT

A bibliographical review of inorganic lithium ion conductors is presented with a focus on those potential candidates for lithium
battery application. A wide variety of inorganic lithium ion conductors, both crystalline ceramics and non-crystalline glasses, are

considered.
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ince its invention by a Japanese company in 1990s, the

lithium ion battery has attracted much attention both
of consumers and different companies because of its perfor-
mance merits of high open-circuit voltage and energy den-
sity, growing markets and rapid increases in production.
Lithium ion secondary batteries have so far been used as a
power source for portable electronic devices such as cellular
telephones, notebook-type personal computers and video
cameras.” The size of the commercially available battery is
limited to 10 Wh, while large size lithium ion batteries are
not yet available on the market on a commercial scale due to
the difficulties in processing and safety issues. However, the
demands for large scale batteries are increasing for reasons
of saving energy and environment protection, i.e. develop-
ment of electric vehicle, load-leveling of electric power, and
supplementary systems for solar and wind power. In order
to meet these special demands, many lithium ion cells are
used in series or parallel combinations, and the use of larger
amount of organic electrolytes is indispensable because
most conventional lithium ion cells contain inflammable
organic solvent as electrolytes. The presence of a large
amount of organic liquid electrolytes could cause severe
leakage or explosion of electrolytes.

One of the effective ways to overcome these safety prob-
lems is to replace the liquid electrolytes with nonflammable
solid electrolytes. Among different solid electrolytes, solid
polymer electrolyte has been considered to be an ideal alter-
native (to liquid electrolyte counterpart), and much work
has been done to develop practical all-solid state batteries
based on solid polymer electrolytes.”® However, the studies
on the shelf life of lithium polymer batteries show that the
chemical stability between the polymer electrolytes and
electrodes is usually difficult to be warranted.”'” Inorganic
lithium ion conductors are able to pass the challenge of
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chemical compatibility with electrodes and usually insensi-
tive to hydrolysis,'” thus the finding or synthesis more suit-
able inorganic Li solid electrolytes that can be employed in
solid-state batteries has been of great interest.

Furthermore, besides the main commercial impetus for
the development of large-scale lithium batteries, inorganic
lithium ion conductors have also been attractive for use as
solid electrolytes of various electrochemical gas sensors'®"”
because of their advantages of high selectivity and repro-
ducibility, small size, simple structure, cheap cost and easy
manipulation. This paper will highlight a number of recent
developments on lithium solid electrolytes.

1. Lithium lon Conductors with
NASICON-type Structure

Among the several families of inorganic solids exhibiting
lithium-ion conduction, lithium ionic conductors based on
the NASICON structure (Fig. 1) are of special interest,
because of their high conductivity combined with low activa-
tion energy. The general formula of NASICON-type com-
pound is (M") (M")_[A,B,0,,] with n=0~1 and m=0~3. The
structure can be described as a covalent skeleton [A,B,0,,1”
constituted of AO,; octahedra and of BO, tetrahedra which
form 3D interconnected channels and two types of intersti-
tial spaces (M and M) where conducting cations are distrib-
uted.’®?V The conducting cations move from one site to
another through the bottlenecks the size of which depends
on the nature of the skeleton ions and on the carrier concen-
tration in both type of sites (M and M).'®

The lithium-containing analogues, LiM,(PO,); where
M=Zr, Ti, Ge, Sn and Hf%??* also have a NASICON-type
structure. Among all these compounds, LiTi,(PO,), has the
most suitable bottleneck size for Li* migration ( the cell vol-
ume of 1309 A?) and a minimum activation energy of 0.28-
0.3 eV for bulk conduction.®® However, LiTi(PO,), only
reveals the ionic conductivity of 2 x 10® Sem™ at room tem-
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Fig. 1. LIM",(PO,),-NASICON structure showing the posi-
tion of Li atoms within the M",(PO,), frame work.

perature due to its poor sinterability. But it was found that
the conductivity and sinterability could be substantially
improved with the addition of excess lithium compounds
such as Li,0, Li,PO,, Li,BO, and Li,P,0,.**" It seems that
the excess lithium compounds act as a flux to accelerate the
sintering process and obtain high grain boundary conductiv-
ity.”™® Furthermore, it is also very effective for the enhance-
ment of the conductivity to partially substitute M* with
trivalent or aliovalent cations. Two types of solid solutions
are available, with the general formula: Li, A M, (PO,),
and Li,, B M, (PO, The substitution mechanisms are
A*= Ay +Vy; to form Li vacancies and B*= By +Li; to
form lithium interstitials, respectively. The vacancy sys-
tems where Zr*, Ti* and Hf* are partially substituted by
Nb® or Ta® have been investigated by Taylor and Chowdari
et al.,”® the maximum conductivity observed is 6 x 107
Sem™ at 25°C for Liy,Ta,4Zr, (PO,),(x =0.9), rising to
2% 107 Sem™ at 200°C.%® In the last several years, Aono et
al %" have conducted extensive studies on the interstitial
solid solutions Li,, B M, (PO,), where B =Al, Cr, Fe, Ga,
Sc, In, Lu, Y and La, M = Ti, Ge, Hf, and Zr. The Ti systems
with the compositions of Li, ,B,.Ti, (PO,), (B=Al or Sc)
show the highest conductivity of 7 x 10* Sem™ at room tem-
perature, rising to 0.1 Sem™ at 300°C,*® and the activation
energy is also very low, 0.35 eV decreasing to 0.2 eV above
200°C. However, it is not well clarified whether the high
conductivities of Li, Al ,Ti (PO, and other trivalent
metal-substituted systems are intrinsic to the structure or
due to formation of secondary phases which favor sintering
and decrease grain-boundary resistance.?”® Furthermore,
for electrolyte application in lithium secondary battery, the
Ti* should better be replaced by other metal ions that
would be less susceptible to reduction by lithium metal.
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The conductivities of Ge and Hf analogues, LiGe,(PO,)O,
and LiHf(PO,),***" were also greatly enhanced by the
addition of excess Li,O or partial substitution of Ge* or
Hf* with Cr, Fe, Sc, In, Lu, Y. The maximum conductivity
of 1.7 x 107* Sem™ at 25°C was attained in the composition
of Li, ,Fe  Hf, (PO,)O,, but further increasing the amount
of dopants greatly reduces the ion conductivity.*” Though
these compounds are stable against lithium, they are signif-
icantly more costly to produce on an industrial scale.
Another two analogues, LiZr,(PO,), and LiSn,(PO,); show
even lower conductivity, because their structure was dis-
torted to monoclinic rather than rhombohedral.”” Recently,
another NASICON-type compounds with the formula LiM™
MY(PO,), (where M'=Nb, Ta; M™=Al, Fe, Cr) have been
investigated by Thangadurai et al.* Among the Ta-contain-
ing compounds, LiAlTa(PO,), shows the highest ionic con-
ductivity of 6.5 x 107 Sem™ at 30°C, rising to 1.0 x 102 Sem™
at 350°C. This material would not undergo a reduction in
contact with lithium at elevated temperature, and it is com-
paratively cheap to produce on an industrial scale. Accord-
ingly, this material deserves further attention to be tailored
into suitable electrolyte materials for solid-state lithium
batteries, especially for high temperature Li batteries. Fur-
thermore, the compounds of Li; M"M™(PO,), (M"=Cr, Fe,
In; MY= Ti, Zr, HP) have also been investigated,* the con-
ductivities are in the range of 107~10"° Scm™ at room tem-
perature, rising to about 10™ Sem™ at 300°C.

2. Lithium Rare Earth Perovskites

Various studies on La,, Li, TiO,**” and Ln,,Li ,TiO,
(Ln=La, Pr, Nd and Sm)*** have been carried out in the
last several years, since Inaguma et al.*” reported the excit-
ing discovery of high lithium ion conducting (10°~10™ S-cm™
at room temperature) in titanate-based solid solutions with
a perovskite-related structure. The highest bulk conductiv-
ity reported in La,, Li, TiO, with x=0.11 is 1x 10~ Sem™
at 25°C,% but the total conductivity is comparatively low,
2x10° Sem™ due to grain boundary resistance. The elec-
tronic conductivity is estimated to be less than 1 x 10 Scm™
at room temperature. The high ionic conductivity is consid-
ered to originate from the presence of a vacancy on the A-
site and a lot of equivalent sites for lithium ions to occupy
and move freely in the A-site perovskite. The following fac-
tors are considered to affect the ionic conductivity:

The carrier as well as vacancy concentration in A-site.
In A-site lattice, there are lithium ions, vacancies and skele-
tal ions (Ln) with larger ionic radius than lithium ions.
When lithium ions migrate among the A-site lattices, the
skeletal ions will behave as an obstacle to ion migration. So
the distribution of lithium ions, vacancies and skeletal ions
in A-site will strongly influence the ionic conductivity.

The subeell volume and the size of the bottleneck.*>*>*" Tt
is thought that conductivity decreases with the decrease of
the bottleneck size, which is related to A-site ion substitu-
tions and hydrostatic pressure. The substitutions of smaller
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lanthanide ions such as Pr, Nd, and Sm for La in La,,Li,,
TiO, decrease the ionic conductivity due to the decrease of
the size of bottleneck. On the other hand, substitution of Sr
with larger ionic radius for La in La, ,Li, ,TiO, increases the
ionic conductivity due to the dilation of the subcell volume.
Applying hydrostatic pressure to these perovskite com-
pounds can suppress lithium ion migration and lead to a
decrease of the conductivity.

The ordering of A-site.®”*"” The XRD results on La,,Li,,
TiO,* and La,, Li, Ti0,**" showed that La* ions, Li* ions,
and vacancies were to a small extent arranged in the alter-
nate La-rich and Li-vacancy-rich layers along the c-axis,
with formation of a tetragonal superlattice doubled along
the c-axis with space group of P4/mmm. It was found that
the ionic conductivity decreased with increasing the extent
of ordering of La*. The decrease in ionic conductivity is
attributed to an increase of activation energy for ionic con-
duction, which is presumably associated with the contrac-
tion of the lattice parameter a of the subcell.

The facilities of tilting of TiO, octahedron.”® It is sug-
gested that the tilting of TiO; octahedral actually occurs
during lithium ion motion in the perovskite, and the conduc-
tivity increases with the increase of the tilting facilities of
TiO, octahedron and vice versa.

The valency of both A-and B-site ions.***” In peroviskite
oxides, with a decrease in the average valence of A-site ions,
i.e. with an increase in the average valence of B-sites ion,
the site potential of A-site becomes shallow, and results in a
decrease in the activation energy for the lithium ion migra-
tion and an increase of the ionic conductivity.

In all, the migration mechanism of lithium ion in these
perovskite compounds has not been fully understood and
more fundamental research works are still needed to clarify
it. Furthermore, similar to Ti-based NASICON compounds,
the perovskite-type compounds containing Ti* ions at the B-
sites are easily reduced and become electronic conductors
when they contact with lithium metal although they show
high lithium ion conductivity at room temperature.®"®
Therefore, it is a most important target to suppress the elec-
tronic conductivity while maintaining the high ionie conduc-
tivity. Those analogues containing Ta®* 4745159 gp N5+ 4654-58)
at the B-site have been of great interest due to their less
susceptibility to reduction. The highest room temperature
bulk conductivity of 7x 10° Sem™ was reported for La,
Li, TaO, with x = 0.06.°” The solid solutions Li, Sr,, M, _
Ta,;,, 0, where M = Cr, Fe, Co, Al, Ga, In and Y, have also
shown high conductivities, the maximum conductivity
observed is 1x10* Sem™ at room temperature for
Li, ;Sr, ;Fe, 55T, 0, (x=0.25).” Furthermore, the electri-
cal conductivities of Nb analogue La,, Li, NbO, have also
been investigated by Belous and Martin et al.,**** the high-
est bulk conductivity for x=0.04 is 4.25x10° Sem™ at
300 K,* and the ionic conductivity can be further enhanced
by partial substitution of La with Sr, the maximum conduc-
tivity value of 7.3 x 10° Scm™ at room temperature was
attained for (Lij,La, ), S, 5, NbO, with x=0.125.%"
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3. Lithium lon-conducting Glasses

Glassy materials have the following advantages for use as
a solid state electrolyte: the easy formation of bulk samples
without grain boundary, continuously variable composi-
tions, isotropic properties for ion migration. Furthermore,
the ability of glasses to be manufactured in thin film config-
uration enables them to make better contact with the elec-
trodes in all solid state devices, which is particularly
important for production of micro batteries and micro sen-
SOTS.

It is well known that oxide glasses containing Ag* and Cu*
ions are very conductive ionically at room temperature.”**”
They are thus called superionic conducting glasses. How-
ever, the conductivity of oxide glasses containing alkali cat-
ion Li* is significantly lower than that of glasses containing
Ag” even though the ionic radius of Li* is just half of that of
Ag’. The big difference in conductivity was thought to be
resulted from the different electronic configurations
between Ag* and Li*.%*%” The former has the complete d'’ in
the outermost orbitals and the latter has S% and thus Ag*
are classified as a soft Lewis acid and Li* is classified as
hard acid, and the soft acids as mobile ions are thought to be
important to obtain highly conductive glasses.®"

Up till now, several different lithium ion conducting glass
systems have been investigated.®”®® Two main strategies
have been used to increase the ionic conductivity of lithium
ion conducting glasses. The first is to use a combination of
two anionic species, which has been known to be effective in
enhancing the ionic conductivity due to the so-called mixed
anionic effect.* The second strategy is to dissolve a highly
ionic lithium salt in a conventional silicate, borate or phos-
phate. The enhancement of conductivity is attributed to a
volume increasing effect of the dissolved ionic salt.®”
Although oxide-based glasses with a high concentration of
lithium ions have been extensively studied to utilize as solid
electrolytes of lithium batteries, the lithium ion conductivi-
ties of most oxide-based glasses are limited to 107 Sem™ at
room temperature.®® Considerable enhancement in conduc-
tivity takes place when oxygen is replaced by the more
polarizable sulphur (sulfide ions are classified as a soft
acid). For example, the conductivity of the 60Li,S.40SiS,
sulfide glass is on the order of 10~ Sem™ at room tempera-
ture,’ increasing several folds when doped with lithium
halides.” The button cells used Li,S-SiS,-Lil glass as elec-
trolyte were commercialized and operated from ambient up
to 180°C.%**” Besides SiS,, the binary and ternary glasses in
Li-S system have other glass formers, namely GeS,, ™"
B,S,*™ and P,S."*™ Glasses in these systems also have
high ionic conductivity comparable to the best crystalline
ionic conductors and polymer electrolytes, in the ranges of
10*-10"° Sem™ at room temperature.

However, there are several drawbacks in processing lith-
ium sulfide glasses. One particular undesirable property is
that glasses spontaneously devitrify, and the addition of
lithium halides usually leads to a decrease of the decomposi-
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tion voltage of the fabricated lithium batteries and a nega-
tive effect on glass stability™ though it can enhance the
ionic conductivity. Fortunately, the crystallization problem
seems to be solved through adding some dopants. Kondo et
al™ have reported that the doping of Li,PO, in Li,S-SiS,
based glasses can enhance the ionic conductivity without
decreasing the decomposition voltage. Minami and
Hayashi et al™ discovered that the addition of small
amount of LixMOy (where M=Si, P,Ge, B, Al, Ga and In) to
60Li,S.405iS, could improve the glass stability against
crystallization and these Li MO, -doped Li,S-SiS, glasses
also exhibited considerably high conductivity of 107 Sem™at
room temperature. Furthermore, these glasses were proved
to have good chemical and electrochemical stability in con-
tact with Li metal and withstand high voltage application
without decomposition.”®” So these oxysulfide glasses must
be one of the most suitable lithium ion conductors as solid
electrolytes for lithium secondary batteries. Recently, Bar-
tholomew et al®™ have also reported that the addition of
some oxides of groups IVA, VA, VB or VIA , such as SnS,
SnS,, TaS,, Bil;, As,S,;, Sb,0, and TeQ, is helpful for the
improvement of the stability of Li,8-SiS,, and the largest
conductivity, 2.1x10® Secm™ at room temperature, was
obtained on the composition 60LiS,-40SiS,-2.79TaS,-
4,02Lil. This conductivity value is the highest one recorded
on inorganic lithium ion conductors at the room tempera-
ture to date.

Presently, the investigation on oxide based Li* ion con-
ducting glasses has also made some progress. Glasses or
glass-ceramics based on Li,0-AlL0,-TiO,-P,0O, have been
reported to reveal a high ionic conductivity and high stabil-
ity.® The maximum conductivity of 1.3 x 10~* Sem™ at room
temperature was obtained on the composition of 14Li,0-
9A1,0,-38Ti0,-39P,0,, this value is twice as large as the
highest one of the sintered Li, Al Ti, (PO,),.***® This
material has been successfully used as solid electrolyte for

Table 1. Solid Lithium Electrolytes for Possible Battery Application
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CO, sensor.*” However, glass formation of this particular
composition is extremely difficult by simple air quenching
techniques® as the glass transition temperature T, and
crystallization temperature T, are relatively close. When
the glass parent composition was adjusted to 50Li,O-
10TiO,-40P,0,, standard air quenching methods can be
used in glass formation, however, the ionic conductivities of
the glass samples with the general composition (50 + x)
Li,0-xA1,0,<10 - 2x)Ti0,-40P,0, (0<x<4.5) were decre-
ased to 107~10" Sem™ at room temperature.*”

4. Li,SiO, and y,-Li,PO,
Structure Materials

While pure Li SiO, with a monoclinic structure, itself, is a
poor lithium ion conductor with the conductivity of 2 x 10
Sem™ at 300°C,*® the ionic conductivity can be improved
when it forms solid solutions with either Li,GeO, or Li,TiO,,
the best conductivity of 5 x 10™* Scm™ at 300°C was attained
for the composition of Li,(Si,.Ti,,)0,*® A more enhance-
ment occurs when Si** was partially substituted by pentava-
lent cations such as P*, V* or As®™, the maximum
conductivity is observed for Li, ((Si, ;P ,)0,, 1 X 10 Sem™ at
100°C.5"

Li,SiO, can also be partially substituted by both divalent
and trivalent cations. Main divalent cations include Zn, Mg,
Co and Ni. The maximum conductivity for Li,Mg,SiO, is
2.3x10° Sem™ at 200°C, rising to 1.5x 107 Sem™ at
400°C.%*” These materials are relatively easy to prepare,
are stable in air and maintain their ionic conductivity for a
very long time. Trivalent cations such as B, Al, Ga, Cr, Fe
and In can partially substitute into Li,SiO, giving rise to
either interstitial or Li vacancy-based solid solutions of gen-
eral formula: Li, MSi, O, (Li'+M*—Si*) and Li,,
M,SiO, (3Li*— M*).""**** In forms of vacancy-based solid
solution, generally, the conductivity decreases with increas-

Room temperature

Solid Electrolyte Structure ionic conductivity (Sem™) Stability with Li Ref.
Obuik Ototal

Lipon(Li, ,PO, (N, ;) Glass - 2x107° 5.5V vs Li [2,139]
0.95(0.6Li,S-0.4SiS,)-0.05Li,PO, Glass - 9x10™* Stable with Li [80]
0.95(0.6Li,S-0.45i8,)-0.05Li,SiO, Glass - 107 10V vs Li/Ag, [78,79]
60Li,S-40SiS,-2.79TaS,-4.02Lil Glass - 2.1x10° ? [81]
Li, ,,La, ,; TiO, Perovskite 10° 2x10° 1.7V vs Li [35-37,50]
Li, ;Sr, M, 5. T2, :0; (M=Fe, Cr) Perovskite 1x107* 6x107° ? [47]
Li, ,M,,Ti, (PO,), (M=Al or Sc) NASICON 3x10° 7x10™ 24V s Li [5, 25-27, 51
141i,0-9A1,0,-38Ti0,-39P,0, Glass - 1.3x10° ? 82]
Li, ,Si,,V,0, Yp-Li,PO, - 1x107 Stable with Li {101
Li,SiAlO, v,-Li,PO, - 2.3x107 65V vs Li [11]
Li,N-KI Tetragonal - 1x 107 25-2.8 val)tz‘g;‘pommn [109]
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ing the size of M* * for a given amount of substitution. In
interstitial solid solutions Li,, M Si, ,O,, except for B¥, the
ionic conductivity also decreases as the size of M* increases,
and the AI** substituted compound Li, ,Al, ,Si, ;O, shows the
maximum conductivity of 1.58 x10?® Sem™ at 300°C.°Y
Another compound LigSiAlO, (x=0.5) exhibits an ionic con-
ductivity of 2.3 x 107 Sem™ at 25°C rising to 1.5 x 10 Sem™
at 100°C, and it is stable versus metal lithium electrode up
to 6.5 V below 100°C.'* So this material may have a poten-
tial application in high voltage lithium cell.

In contrast to Li,SO,, the aliovalent doping of Li,GeO, or
Li,TiO, leads predominantly to orthorhombic y;-Li,PO, type
phases. The compound Li,,Zn (GeO,), which shows high
conductivity at high temperature, e.g., 0.125 Sem™ at 300°C,
was firstly named LISICON.**® (Lithium Super Ionic Con-
ductor). But the room temperature conductivity of this com-
pound is just 107 Scm™. One undesirable property for these
LISICONSs is that they usually show a remarkable reduc-
tion in ionic conductivity with time at low temperature,
which is attributed to the trapping of mobile lithium ions by
the immobile sublattice at low temperature via the forma-
tion of defect complexes.®”

The solid solutions of Li AO,-Li,BO, (A=Si, Ge, Ti and
B=P, As, V, Cr), with the general formula Li,, A B, O,
have also y,-Li,PO, type phase structure,”’*” the conduc-
tivities of most intermediate compositions are much higher
than those of the end-members. Most of the compounds are
thermodynamically stable and relatively insensitive to
atmospheric attack. The maximum ambient conductivity of
4 x 107° Sem™ was attained for Li, Ge,V,,0,,* the silicate
analogue, Li, Si, ,V, .0, shows slightly lower conductivity of
1x 107 Sem™ at room temperature.’®™ It is stable in contact
with lithium metal, and also it is less expensive to produce.
So this material is an attractive candidate for use as solid
electrolyte of lithium secondary batteries.

5. Li;N and the Related Materials

Single crystals of lithium nitride Li,N, with a layered crys-
tal structure have very high ionic conductivity of 1x 107
Sem™ at room temperature, perpendicular to the c-axis (but
two orders of magnitude less parallel to the c-axis), and the
polycrystalline Li,N also show ionic conductivity as high as
4% 10™ Sem™ at 25°C."%” Unfortunately, the practical appli-
cations of pure Li,N are greatly limited due to its low theo-
retical decomposition potentials of 0.445 V'*® and its poor
sinterability. A lot of attempts have been conducted to
increase the decomposition voltage.'”*'® For example, the
Al-doped compound, Li,AIN, which is a cubic anti-fluorite
type structure shows a decomposition of 0.85 V at 104°C.'*®
However, the ionic conductivity is decreased to 5 x 10°® Sem™
at room temperature. LiMgN with the same anti-fluorite
type structure exhibits even lower conductivity.'® A mix-
ture of Li,N, Lil and LiOH, with the ratio of Li;N:Lil:
LiOH=1:2:0.77, shows a high conductivity of 0.95x10™
Sem™ at 25°C, and its decomposition voltage is also
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increased to 1.6-1.8 V. This material is, however, very
hygroscopic and unsuitable for lithium battery application.
Ternary lithium phosphorous nitrides LiPN, and Li PN,
have the conductivities of 6.9 x 107 Sem™ and 1.7 x 107
Sem™ at 400 K respectively, which are two to three orders of
magnitude less than that of Li,N'* and are of little interest.
Lithium nitride chloride (Li,N,Cl,), which crystallizes in a
defect antifluorite structure with 10% of lithium sites
vacant, shows the ionic conductivity of about 10 Scm™ at
350°C. The electronic contribution to the total conductivity
is smaller by a factor of less than 10™. These materials are
thermodynamically stable against pure metallic lithium
and have a decomposition voltage larger than 2.5 V.1
Recently, new intermediate compounds 3Li,N-MI(M=LlI,
Na, K, Rb) in the quasi-binary systems Li,N-MI were syn-
thesized.'® They are isomorphous compounds with a tet-
ragonal structure. The sintered samples exhibited high
ionic conductivity of 1.1 x10™-7.0x10®° Sem™ at room
temperature with activation energies of 0.32 — 0.34 eV. The
decomposition voltages were approximately 2.5-28YV,
much higher than those of Li;N and Li,N-Lil-LiOH electro-
lyte. The phosphorous analogue, Li,P, has a room tempera-
ture conductivity of around 10 Sem™ and it can be used up
to 2.2 V against metal lithium electrode."” The composite
electrolytes made of lithium phosphate (Li,P) and lithium
chloride were reported to be thermodynamically stable in
contact with metal lithium electrode and had also a very
high ionic conductivity of about 10™*Scm™ at room tempera-

ture 111

6. Lithium Metal Halides

Spinel-type ternary chlorides Li,MCl, with M=Mg, Mn, Ty,
Cd, Cr, Co and Fe have attracted a lot of interest due to
their high ionic conductivities in the past two decades.”*"®
All these compounds crystallize with an inverse distribution
with half of the lithium occupying tetrahedral sites and the
other half occupying octahedral sites of space group Fd3m.
Almost all of these chlorides exhibit phase transition in the
ranges of 300-500°C."® The low temperature cubic spinels
such as Li,MnCl,, Li,MgCl, and Li,CdCl, transform to a
defect NaCl-type structure at high temperature.’'” Other
phases such as the Cr, Fe, and Co analogues are distorted
spinel at low temperature due to the cation ordering and
transform to cubic spinels at higher temperatures.''” Gen-
erally, among all these ternary chlorides the cubic spinels
showed highest conductivities. For example, Li,MnCl, and
Li,MgCl, have shown an ionic conductivity of 0.14 Sem™ at
400°C; Li,CdCl, has a slightly higher value 0.3 Scm' at
400°C rising to 1.0 Sem' at 500°C,"'® but the practical appli-
cation is greatly restricted due to its toxicity. However, par-
tial substitution Na or Cu for Li in these ternary chlorides
leads to reduction in the conductivity due to the mixed
alkali effect.""®"'” Although the iodide system Lil-MI,
(M=Mn, Cd, Pb) demonstrate a high ionic conductivity of 0.1
Sem' at 300°C for Li,CdI,, the monophase solid solution
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existed only above 265°C.""'® Upon cooling down they will
decompose to form Lil and Cdl, irreversibly, so they are
unsuitable for battery applications.

7. Li,SO, based Materials

Lithium sulphate is a well known ionic conductor which
undergoes a phase transition from monoclinic (B-Li,SO,) to
cubic (0-Li,SO,) at 848 K. The low temperature monoclinic 3
phase has low conductivity of 3.4 x 10°® Sem™ at 500°C and
the high temperature face centred cubic o-phase has very
high ionic conductivity of 1 Sem™ at 575°C, increasing to 3
Sem™ at 800°C.M** So the suitable operating temperatures
are usually higher than 300°C, these temperature are too
high for most practical application, much work has been
carried out to decrease the transition temperature without
reducing the conductivity.

Studies of the binary Li,SO,-M,SO, (M=Na, K, Ag) sys-
tems have shown that partially substituting Na, K or Ag for
Li leads to the decrease of p < o phase transition tempera-
ture, i.e. from 850 K to 791 K for LiNaSO,, and 688 K for
LiAgS0,.*V In the meantime, the ionic conductivities
were slightly increased, from 0.86 Sem™ to 0.93 Scm™ at
800 K for LiNaSO,, and 1.17 Sem™ at 688 K for LiAgSO,.
The operating temperature needed is still a little too high
and the operating temperature range is rather narrow.

Attempts have also been made to substitute Li with a
divalent ion thereby creating lithium vacancy. The system
of Li,SO,-MSO, (M=Mg, Ca, Sr, Ba, Zd, Cd and Mn) shows
limited solubility of MSO, in B-Li,SO,,"”*'® and the highest
conductivity is correlated with the eutectic composition or
the composition with minimum crystallite size.’*® But the
ionic conductivity at low temperature of these divalent-cat-
ion-dopants-substituted B-Li,SO, just increases by about an
order of magnitude, and the decrease in the phase transi-
tion (monoclinic to cubic phase) temperature of these doped
B-Li, SO, are also very small.’*¥

The system of Li,SO,-Li,ASO, (A=P*, V**) also shows a
limited solubility of Li,ASQ, in a-Li,SO,, and the ionic con-
ductivity was reduced by partial substitution of S by P**or
V5+.126-128)

8. Lithium lon Conductor
Composite Materials

Subsequent to Liangs discovery'® that the dispersion of
small AL O, particles into pure Lil enhances the Li* ion con-
ductivity of the host, a number of experimental and theoret-
ical studies have been devoted to this phenomenon.
Different composite materials, such as Li,,7Zn (GeO,),-
Zr0,,"® Li,S0,-AL,0,,"" Li X-ALO,(X=F", CI, Br’, CO,*),"”
and Li,PO,-ALO,"* have been studied through either
mechanical mixing or thermal decomposition of salts. The
enhancement in ionic conductivity is ascribed to an increase
in interfacial transport by one to two orders of magnitude.
Generally, it is found that the ionic conductivity of the host
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matrix varies substantially with the particle size of the dis-
persoids. Several models such as space-charge model,®”
percolation model™®**” and surface morphology model™*’
etc. have been proposed to explain this phenomenon. How-
ever, there is little high temperature conductivity data, rele-
vant to battery application, available. Also the reported
current density for lithium batteries using Lil-AL,O, com-
posite electrolytes are just about 100 pAcm™,"*® which is a

little low for practical battery application.

9. Concluding Remarks

Though lithium ion secondary batteries have been popu-
larized as a power source for portable electronic devices
such as cellular telephone and portable computers, it
involves a serious safety problem especially when they are
used as large-scale power sources for electric vehicles or
energy storage for load leveling because of the presence of
flammable organic solvent in the electrolytes. The substitu-
tion of solid electrolyte for the organic one should be a fun-
damental solution to decrease the safety problems and
extend the application of lithium battery with high reliabil-
ity. Besides improvement of safety, a solid electrolyte may
effectively suppress the side reactions that deteriorate bat-
tery performances, thus greatly improve the cycle perfor-
mance. Furthermore, as most inorganic lithium ion
conductors can keep good chemical compatibility with elec-
trode materials, so the choice for electrode materials
becomes more flexible.

Solid electrolytes which are to be used in lithium second-
ary batteries should posses high ionic conductivity. Even for
a thin film electrolyte of one micrometer thickness an ionic
conductivity of more than 10° Sem™ is usually required.’*
Furthermore, they should be stable in contact with the elec-
trodes and be relatively simple and inexpensive to prepare.
Besides solid polymer electrolytes, some of the inorganic
lithium conductors outlined in Tablel appear to be good
candidates for possible application as solid electrolytes, and
the following systems may deserve particular attention in
the future.

1. Li,S-based glasses. The Li,S-Si,S glasses exhibit ambi-
ent temperature ionic conductivity as high as 10 Sem™,
nearly comparable to that of liquid or polymer electrolytes.
The glass stability (against crystallization) could be effec-
tively improved by the addition of small amount of Li MO,
(where M=Si, P, Ge, B, Al, Ga and In) or some oxides of
groups such as TaS,, SnS, SnS,, Bil;, Sb,0, etc. Further-
more, these glasses were proved to have good chemical and
electrochemical stability in contact with elemental Li and
withstand high voltage application without decomposition.
So this kind of glasses may be one of the most suitable lith-
ium ion conductors as solid electrolytes for lithium second-
ary batteries.

2. Lithium compounds with perovskite structure. They
are easy to be fabricated into dense samples through the
conventional mixed oxide process, and Li,,,La, ., TiO, also
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reveal a high conductivity of 2 x 10 Sem™ at room temper-
ature. However, Ti-based compounds can intercalate lith-
ium ions with the consequence reduction of Ti* to Ti*
leading to the appearance of electronic conductivity, and the
lithium-rich stability limit is just 1.7 V.*® The Ta and Nb
perovskites, La,, Li, TaO, and La,, Li, NbO, have nearly
the same or slightly lower ionic conductivities at room tem-
perature, but they are expected to be less susceptible to
reduction in contact with elemental Li, thus deserve further
attention toward tailing into electrolyte materials.

3. Lithium compounds with a NASICON structure. Even
though Li Al ,Ti (PO,), exhibits a high conductivity of
7% 10™* Sem™ at room temperature, similar to Ti-based per-
ovskite compounds, the use of this material as solid electro-
lytes are greatly limited by the fact the lower lithium-rich
stability limit of 2.4V.® The Ta-based analogues,
Li,,, Ta, Al (PO,), system exhibits slightly lower conduc-
tivity than that of LiTi,(PO,),, but they are stable against Li
metal. So they are attractive candidates as solid electrolytes
if the ionic conductivities can be sufficiently enhanced.

4. v,-Li,PO, type structure compounds. Among the solid
solution of Li,AO -Li;BO, (where A=Si, Ge; B=P,V), Li, Si,
PO, system deserves special attention due to its high ionic
conductivity, good stability in contact with lithium metal,
moderate cost and ease to be prepared. Furthermore, the
interstitial solid solutions Li,, Al Si, O, also deserves fur-
ther attention, although the room temperature conductivity
of Li SiAlO, is remarkably small (just 2.3 x 107 Sem™), they
are stable versus metal lithium electrode up to 6.5 V, mak-
ing it a suitable candidate for high voltage lithium batteries
application.
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