DOI QR코드

DOI QR Code

Bone Cements in TTCP, DCPA, β-TCP and PHA System

TTCP-DCPA-β-TCP-PHA계 골 시멘트

  • 김형준 (한양대학교 세라믹공학과) ;
  • 최성철 (한양대학교 세라믹공학과) ;
  • 석준원 (아헨대학 세라믹공학과) ;
  • Published : 2002.01.01

Abstract

The effect of $\beta$-TCP and PHA as additives on initial setting time, compressive strength and surface micro-structure after in vitro test of bone cement in TTCP and DCPA system was investigated. The median particle sizes of TTCP, $\beta$-TCP, DCPA and PHA for bone cement were about 3, 5, 0.9 and 4${\mu}{\textrm}{m}$, respectively. Initial setting time and compressive strength of bone cement with various composition was measured by Vicat test and Universal Testing Machine, and surface morphology and crystalline phases of bone cements were observed and analyzed by SEM and x-ray diffractometer. Initial setting time was not affected by composition but by powder/liquid ratio, and cement with PHA required double amount of solution for paste as much as one without PHA, especially. It was thought that $\beta$-TCP and PHA in bone cements was not related to setting reaction. Thus, the addition of $\beta$-TCP and PHA in bone cements decreased compressive strength and inhabited HAP from being produced on surface in vitro test. In conclusion, it was not expected that $\beta$-TCP and PHA in TTCP-DCPD bone cements enhanced the strength and bioacitivity.

본 연구에서는 Tetracalcium Phosphate(TTCP), Dicalcium Phosphate Anhydrate(DCPA)계 골 시멘트에 $\beta$-tricalcium Phosphate (TCP)와 Precipitated Hydroxy Apatite(PHA)를 첨가하였을 때, 골시멘트의 초기 응결시간과 강도에 미치는 영향 및 in vitro test후의 표면 미세구조의 변화를 관찰하고자 하였다. 골 시멘트에 사용된 TTCP와 $\beta$-TCP는 약 3-5$mu extrm{m}$으로 합성후 분쇄하였으며, DCPA는 0.9$\mu\textrm{m}$, 그리고 PHA는 4$\mu\textrm{m}$의 평균 입경을 가졌다. 각각의 조성으로 배합된 시멘트는 Vicat건에 의한 초기응결시간 측정과 압축강도 시험을 행하였고, 의사체액내에 침적 후 침전 생성물을 x-선 회절 분석과 주사전자현미경을 이용하여 분석, 관찰 하였다. 초기 응결시간은 $\beta$-TCP나 PHA의 존재 유무와 함량의 증가에 따라 크게 좌우되지 않았으나, 분말 : 액상의 비에 영향을 받았으며, 특히 PHA가 함유되는 경우 PHA의 비표면적으로 인하여 응결에 요구되는 액상의 양은 PHA가 없는 경우에 비하여 2배 이상 되었다. $\beta$-TCP PHA의 첨가로 인해 압축강도는 낮아졌고, 이는 수화 생성물인 HAP의 생성 정도가 낮았기 때문이었다. 이는 x-선 회절 분석과 주사전자 현미경 관찰을 통하여 확인할 수 있었다. 본 연구로부터 TTCP-DCPA계 골 시멘트에 $\beta$-TCP나 PHA의 첨가는 기계적 물성과 생체 반응성 향상에 효과적이지 못하다는 것을 확인 할 수 있었다.

Keywords

References

  1. J. Am. Ceram. Soc. v.81 no.7 Bioceramics L. L. Hench https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  2. Ceramist v.3 no.3 Bio-active Bone Cements S. B. Cho
  3. J. BioMed. Mat. Res. v.43 Bone Source Hydroxyapatite Cement: A Novel Biometerial for Cranifocial Skeletal Tissue Engineeing and Reconstruction C. D. Friedman;L. C. Chow https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0
  4. Ceramics v.34 no.7 Calcium Phosphate Bioactive Paste H. Takeuchi
  5. J. Biomed. Mater. Res. v.58 First Histological Observation on the Incorporation of a Novel Calcium Phosphate Bone Substitute Material in Human Cancellous Bone M. R. Sarker;N. Wachter;P. Patka;L Kinzl https://doi.org/10.1002/1097-4636(2001)58:3<329::AID-JBM1025>3.0.CO;2-9
  6. J. Biomed. Mater. Res. v.55 In vivo Testing of a New in situ Setting β-Tricalcium Phosphate Cement for Osseous Reconstruction C. Niedgart;U. Maus;E. Redmann;C. H. Siebert https://doi.org/10.1002/1097-4636(20010615)55:4<530::AID-JBM1046>3.0.CO;2-D
  7. J. Mat. Sci. Med. v.4 Formultion and Setting Times of Some Calcium Orthophosphate Cements: A Pilot Study F. C. M. Driessens;M. G. Boltong;O. Bermudez;J. A. Planell https://doi.org/10.1007/BF00120130
  8. J. Mat. Sci. Med. v.4 Compressive Strength and Diametral Tensile Strength of Some Calcium-orthophosphate Cements: A Pilot Study O. Bermudez;M. G. Boltong;F. C. M. Driessens;J. A. Planell https://doi.org/10.1007/BF00122197
  9. J. Cer. Soc. Jpn. v.99 no.120 Development of Self-setting Calcium Phosphate Cements L. C. Chow https://doi.org/10.2109/jcersj.99.954
  10. J. Biomed. Mater. Res. v.44 Healing of Segmental Bone Defects in Rat induced by a β-TCP-MCPM Cement Combined with rh BMP-2 K. Ohura;C. Hamanishi https://doi.org/10.1002/(SICI)1097-4636(199902)44:2<168::AID-JBM7>3.0.CO;2-4
  11. J. Mat. Sci. in Med. v.9 Bone Morphogenetic Protein and Ceramics-induced Osteogenesis H. Yuan;P. Zou;X. Zhang;K. De Groot https://doi.org/10.1023/A:1008998817977
  12. Inorganic Material v.5 Effect of Addition of Acrylamide on Hydraulically Hardening of Calcium Phosphate K. Muroyama;K. Yamashita;T. Umegaki
  13. J. Biomed. Mater. Res. v.56 Enhancement of Bone Regeneration Using Resorbable Ceramics and a Polymer-ceramic Composite Material H. Schliephake;T. Kage https://doi.org/10.1002/1097-4636(200107)56:1<128::AID-JBM1077>3.0.CO;2-L
  14. J. Mat. Sci. Mat. in Med. v.6 Properties and Mechanism of Fast-setting Calcium Phophate Cemant K. Ishikawa;S. Takagi;L Chow;Y. Ishikawa https://doi.org/10.1007/BF00151034
  15. J. Biomed. Mater. Res. v.53 no.3 Diametral Tensile Strength and Compressive Strength of a Calcium Phosphate Cement: Effect of Applied Pressure L. C. Chow;S. Hirayama;S. Takagi;E. Perry https://doi.org/10.1002/1097-4636(200009)53:5<511::AID-JBM10>3.0.CO;2-E
  16. J. Biomed. Mater. Res. v.58 no.1 Morphological and Phase Chracterization of Retrieved Calcium Phosphate Cement Implants S. Takagi;L. C. Chow;M. Markovic;C. D. Friedman;P. D. Costantino https://doi.org/10.1002/1097-4636(2001)58:1<36::AID-JBM50>3.0.CO;2-#
  17. Advn. Ceram. Bas. Mat. v.2 Rheology Changes Associated with Setting of Cement Paste R. J. Struble;W. Lei https://doi.org/10.1016/1065-7355(95)90041-1
  18. Inorganic Phosporus Chemistry T. Kanazawa
  19. Inorganic Material v.6 Novel Application of Amorphous Calcium Phosphate for Biomaterials and Functional Materials T. Yasue;T. Toyama;Y. Arai
  20. J. Mat. Sci. Med. v.5 Optimization of a Calcium Orthophosphate Cement Formulation Occuring in the Combination of Monocalcium Phosphate Monohydrate with Calcium Oxide O. Bermudez;M. G. Boltong;F. C. M. Driessens;J. A. Planell https://doi.org/10.1007/BF00121693
  21. J. Biomed. Mater. Res. v.41 no.4 Improvement of the Mechanical Properties of New Calcium Phosphate Bone Cement in the $CaHPO_4-{\alpha}-Ca_3(PO_4)_2$ System: Compressive Strength and Microstructural Development E. Fernandez;F. J. Gil;J. A. Planell https://doi.org/10.1002/(SICI)1097-4636(19980915)41:4<560::AID-JBM7>3.0.CO;2-A
  22. Biometerials v.19 Formation of Hydroxyapatite in New Calcium Phosphate Cements S. Takagi;L. C. Chow;K. Ishikawa https://doi.org/10.1016/S0142-9612(97)00119-1
  23. J. Biomed. Mater. Res. v.43 Resorbable Calcium Phosphate Bone Substitute D. Knaack;M. E. P. Goad;M. Aiolova;D. D. Lee https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<399::AID-JBM7>3.0.CO;2-J
  24. J. Biomed. Mater. Res. v.53 no.5 In vitro Bioactive Behavior of Hydroxylapatite-coated Porous $Al_2O_3$ D. Shi;G. Jiang;X. Wen https://doi.org/10.1002/1097-4636(200009)53:5<457::AID-JBM3>3.0.CO;2-2
  25. J. Am. Ceram. Soc. v.74 no.5 Kinetics of Hydroxyapatite Formation at Low Temperature P. W. Brown;M. Fulmer https://doi.org/10.1111/j.1151-2916.1991.tb04324.x
  26. J. Am. Ceram. Soc. v.74 no.8 Variation in Solution Chemistry During the Low-temperature Formation of Hydroxyapatite P. W. Brown;N. Hocker;S. Hoyle https://doi.org/10.1111/j.1151-2916.1991.tb07798.x
  27. J. Mar. Sci. Med. v.8 Treatments to Induce the Nucleation and Growth of Apatite-like Layers on Polymeric Surface and Foams R. L. Reis;A. M. Cunha;M. H. Fernandes;R. N. Correia https://doi.org/10.1023/A:1018514107669
  28. J. Mat. Sci. Med. v.9 Ultrasonic Implantation of Calcium Metasilicate Glass Particles into PMMA K. Tsuru;S. Hayakawa;C. Ohtsuki;A. Osaka https://doi.org/10.1023/A:1008875502451
  29. Mat. Chem. Phys. v.58 Solution Property of Calcium Phosphate Cement Hardening Body C. Liu;W. Shen;J. Chen https://doi.org/10.1016/S0254-0584(98)00247-8

Cited by

  1. Production and characterization of calcium phosphate cement incorporated with platelet concentrate vol.11, pp.S1, 2014, https://doi.org/10.1007/s13770-013-1122-9
  2. Cell compatibility of calcium phosphate cement incorporated with platelet concentrate vol.12, pp.S1, 2015, https://doi.org/10.1007/s13770-014-0416-x