DOI QR코드

DOI QR Code

Effect of Asymmetric Electrode Structure on Electron Emission of the Pb(Zr0.8Ti0.2)O3 Ferroelectric Cathode

Pb(Zr0.8Ti0.2)O3강유전 음극에서 비대칭 전극구조가 전자 방출 특성에 미치는 영향

  • 박지훈 (연세대학교 세라믹공학과) ;
  • 김용태 (연세대학교 세라믹공학과) ;
  • 윤기현 (연세대학교 세라믹공학과) ;
  • 김태희 (안동대학교 재료공학부) ;
  • 박경봉 (안동대학교 재료공학부)
  • Published : 2002.01.01

Abstract

To investigate the electrode structural effect on the ferroelectric electron emission, the electric field distribution in a 2-dimensional structure was calculated as a function of upper electrode diameter, and the switching charge density and emission charge were measured simultaneously. The simulation of the electric field distribution showed that an asymmetric electrode structure could cause a stray field on the bare surface of the ferroelectric cathode near the edge of upper electrode. The distance of stray field from the electrode edge increased with increasing ferroelectric thickness, but it did not depend on the upper electrode diameter. The switching charge density increased more on the cathode with smaller upper electrode diameter. This was attributed to the stray field on the bare ferroelectric surface near the electrode edge, because the stray field for the asymmetric ferroelectric cathode enhanced polarization switching near the electrode edge. From the switching charge density, the distance of stray field from the electrode edge was calculated as about 11-14${\mu}{\textrm}{m}$. The threshold voltage of electron emission was 61-68 kV/cm, which was almost 3 times lager than the coercive voltage. The threshold voltage was not determined just by coercive voltage, but by strength and distance of the stray-field, which largely depended on the geometrical structure of ferroelectric cathode.

Pb(Zr$_{0.8}$Ti$_{0.2}$)O$_3$강유전체 음극의 상부 전극 크기를 변화시키며(500$mu extrm{m}$~900$\mu\textrm{m}$)비대칭 전극 구조에서의 전자 방출에 대하여 연구하였다. 펄스 전기장을 가했을 때 나타나는 분극 반전에 의한 전류 밀도는 상부 전극 크기를 감소시킴에 따라 증가하였다. 이것은 비대팅 전극 구조에 의해 강유전체 표면에서 stray-field가 발생하고, stray field가 전극의 모서리 부근의 강유전체 표면 하부에도 분극 반전을 발생시켰기 때문이다. 전기장 전산모사를 통하여 이러한 stay-field의 존재 가능성을 예측할 수 있었고, 분극 반전에 의한 전류 밀도 측정 결과 stray-field가 미치는 거리는 약 11-l4$\mu\textrm{m}$이었다. 전자방출의 문턱전계는 항전계 의 약 3배인 61-68kV/cm이었으며, 문턱전계가 단순히 강유전체의 항전계에 의해 결정되는 것이 아니라, 강유전 음극의 구조에 의해 결정되는 stray-field의 세기와 stray-field가 미치는 거리에 영향을 받음을 전산모사를 통해 예측할 수 있었다.

Keywords

References

  1. Appl. Phys. Lett. v.54 no.21 Low-pressure Hollow Cathode Switch Triggered by a Pulsed Electron Beam Emitted from Ferroelectrics H. Gundel;H. Riege;J. Handerek;K. Zioutas https://doi.org/10.1063/1.101169
  2. Ferroelectrics v.109 Pulsed Electron Emission from PLZT Ceramics H. Gundel;J. Handerek;H. Riege;E. J. N. Wilson;K. Zioutas https://doi.org/10.1080/00150199008211403
  3. J. Appl. Phys. v.78 no.4 Copious Electron Emission from Triglycine Sulfate Ferroelectric Crystals V. D. Kugel;G. Rosenman;D. Shur;Y. E. Krasik https://doi.org/10.1063/1.360758
  4. J. Appl. Phys. v.73 no.6 Electron-beam Diodes Using Ferroelectric Cathodes J.D. Ivers;L. Schachter;J. A. Nation;G. S. Kerslick;R. Advani https://doi.org/10.1063/1.353062
  5. Jpn. J. Appl. Phys. v.31 no.9B Field-excited Electron Emission from Ferroelectric Ceramics in Vacuum J. Asano;T. Imai;M. Okuyama;T. Hamakawa https://doi.org/10.1143/JJAP.31.3098
  6. Ferroelectrics v.128 Field-excited Electron Emission from Lanthanum-doped Barium-strontium-titanate Ceramics J. Handerek;H. Riege https://doi.org/10.1080/00150199208015064
  7. Jpn. J. Appl. Phys. v.35 no.9B Field-excited Electron Emission from $(1-y)Pb(Mg_{\frac{1}{3}}Nb_{\frac{2}{3}})O_3-yPbTiO_3$ Ceramics Y. Kuratani;M. Okuyama;Y. Hamakawa https://doi.org/10.1143/JJAP.35.5185
  8. J. Am. Ceram. Soc. v.82 no.3 Polarization Switching and Electron Emission from Lead Lanthanum Zirconate Titanate Ceramics W. Zhang;W. Huebner;S. E. Sampayan;M. L. Krogh https://doi.org/10.1111/j.1151-2916.1999.tb01806.x
  9. Ferroelectrics v.141 Barkhausen Pulses and Electron Emission from 9.4/65/35 PLZT Ceramics G. Pleyber;K. Biedrzycki;R. L. Bihan https://doi.org/10.1080/00150199308008430
  10. Jpn. J. Appl. Phys. v.33 no.9B Electron Emissin from Lead-zirconate-titanate Ferroelectric Ceramics Induced by Pulse Electric Field M. Okuyama;J. Asano;Y. Hamakawa https://doi.org/10.1143/JJAP.33.5506
  11. Jpn. J. Appl. Phys. v.32 no.9B Electron Emission from PZT Ceramics by External Pulsed Electric Fields - pulse Dependence of Emitted Charge J. Asano;S. Iwasaki;M. Okuyama;Y. Hamakawa https://doi.org/10.1143/JJAP.32.4284
  12. Jpn. J. App. Phys. v.37 no.9B Improvement of Field-induced Electron Emission Using Ir or IrO₂Electrode and Ferroelectric Film Coating Y. Kuratani;Y. Morikawa;M. Okuyama https://doi.org/10.1143/JJAP.37.5421
  13. Integrated Ferroelectrics v.9 Electron Emission from PZT Ceramic Thin Plate by Pulsed Electric Field M. Okuyama;J. Asano;Y. Hamakawa https://doi.org/10.1080/10584589508012917
  14. J. Appl. Phys. v.84 no.3 Features and Technology of Ferroelectric Electron Emission H. Riege;I. Boscolo;J. Handerek;U. Herleb https://doi.org/10.1063/1.368230
  15. Appl. Phys. Lett. v.70 no.82 Surface Discharge Plasma Induced by Spontaneous Polarization Switching D. Shur;G. Rosenman;Y. Krasik https://doi.org/10.1063/1.118279
  16. Appl. Phys. Lett. v.70 no.12 Dual Mode Electron Emission from Ferroelectric Ceramics D. N. J. Shannon;P. W. Smith;P.J. Dobhson;M. J. Shaw https://doi.org/10.1063/1.118635
  17. J. Appl. Phys. v.88 no.11 Electron Emission from Ferroelectrics G. Rosenman;D. Shur;Y. E. Krasik;A. Dunaevsky https://doi.org/10.1063/1.1319378
  18. IEEE Trans. Electr. Insul. v.24 Surface Flashover of Insulator H. C. Miller https://doi.org/10.1109/14.42158
  19. Science and Technology of Electroceramic Thin Films Electron Emission form Ferroelectrics H. Gundel;O. Auciello(ed.);R. Waser(ed.)
  20. J. Appl. Phys. v.82 no.2 Polarization Switching in Ferroelectric Cathode G. Rosenman;D. Shur;K. Garb;R. Cohen;Y. Karasik https://doi.org/10.1063/1.365771
  21. J. Kor. Ceram. Soc. v.27 no.2 Effects of $MnO_2$on the Dielectric and Piezoelectric Properties of $Pb(Zr_{0.52}Ti_{0.48})O_3$ Ceramics J. S. Kim;K. H. Yoon;B. H. Choi;J. O. Park;J. M. Lee
  22. J. Kor. Ceram. Soc. v.28 no.4 Effects of $MnO_2$ on the Dielectric Hysteresis Loop Characteristics of $Pb(Zr_{0.52}Ti_{0.48})O_3$ Ceramics J. S. Kim;B. H. Choi;J. M. Lee;K. H. Yoon
  23. J. Kor. Ceram. Soc. v.37 no.1 Electron Emission from $Pb(Zr_{1-x}Ti_x)O_3$ Ferroelectrics by Pulsed Electric Field Y. T. Kim;K. H. Yoon;T. H. Kim;K. B. Park;S. H. Kwak
  24. Integrated Ferroelectrics v.18 Nanosecond Swiching of Ferroelectric Thin Films for Application to a Short-pulse Micro Electron Emitter D. Averty;J. L. Chatier;H. W. Gundel;R. L. Bihan https://doi.org/10.1080/10584589708221689
  25. Jpn. J. Appl. Phys. v.36 no.9B Effects of Polarization Reversal and Surface Conditions on the Ferroelectric Electron Emission M. Miyake;S. Ibuka;K. Yasuoka;S. Ishii https://doi.org/10.1143/JJAP.36.6004
  26. Ferroelectrics v.110 Electron Emission at Switching of Ferroelectrics G. Rosenman;O. Malyshkina;Y. Chepelev https://doi.org/10.1080/00150199008008906
  27. J. Appl. Phys. v.83 no.11 Mixed Electron Emission from Doped Pb(Zr,Ti)O₃Ceramics: Microstructural Aspects W. Zhang;W. Huebner https://doi.org/10.1063/1.367472
  28. J. Appl. Phys. v.89 no.1 Lifetime of Ferroelectric Pb(Zr,Ti)O₃Ceramic Cathodes with High Current Density M. Einat;D. Shur;E. Jerby;G. Rosenman https://doi.org/10.1063/1.1329350