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A SECOND ORDER UPWIND METHOD
FOR LINEAR HYPERBOLIC SYSTEMS

SUNG-IK SOHN AND JUN YONG SHIN

ABSTRACT. A second order upwind method for linear hyperbolic
systems is studied in this paper. The method approximates solu-
tions as piecewise linear functions, and state variables and slopes of
the linear functions for next time step are computed separately. We
present a new method for the computation of slopes, derived from
an upwinding difference for a derivative. For nonoscillatory solu-
tions, a monotonicity algorithm is also proposed by modifying an
existing algorithm. To validate our second order upwind method,
numerical results for linear advection equations and linear systems
for elastic and acoustic waves are given.

1. Introduction

We consider the linear system of partial differential equations
U(iE,t) = U0($)7

where U : Rx R — R™ and A € R™™ is a constant matrix. This
system is called hyperbolic if A is diagonalizable with real eigenvalues
[1]. Moreover, if the eigenvalues are distinct, the system is called strictly
hyperbolic. Many physical phenomena such as acoustics, elasticity, elec-
tromagnetics, and medical imaging are governed by the linear system
(1). In this paper, we study numerical methods for solutions of strictly
hyperbolic linear systems.

The methods studied here are upwind schemes. Upwind schemes are
usually referred as the numerical methods taking into account upwind
directions from which characteristic informations propagates [1]. Many
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high resolution upwind schemes for hyperbolic systems employ the Go-
dunov method [2]. The Godunov method approximates the solutions
as piecewise constant functions and is only first order accurate. For
extension of the Godunov method to higher order accuracy, dominant
approaches are the approximation of solutions as piecewise polynomials.
The higher order upwind methods using piecewise polynomials have been
successfully developed for nonlinear hyperbolic problems [3, 4, 5]. How-
ever, numerical methods of linear hyperbolic systems have their own
importance and have been remained for improvements, as pointed out
by Roe [6].

In this paper, we present a second order upwind method for linear
hyperbolic systems, using piecewise linear polynomials. Such method
was first studied by Van Leer [7] for the scalar advection equation. The
Van Leer’s method consists of two schemes, scheme for state variables
and one for slopes of piecewise linear polynomials. Van Leer proposed
three different methods for the computation of slopes. In addition to Van
Leer’s methods, we propose a new method for the slope computations.

Numerical solutions of higher order methods have oscillations around
discontinuities and monotonicity of initial data is not preserved during
the computation. Godunov proved that a linear monotonicity preserv-
ing method is at most first order accurate [2]. In the second order up-
wind methods, nonoscillatory solutions can be obtained by adjusting the
slopes. Such adjusting algorithm is called the monotonicity algorithm or
slope limiter. Among various choice of slope limiters, the algorithm pro-
posed by Van Leer [7] is applied to our second order upwind method. We
will show that the Van Leer’s limiter works for most of linear systems,
but for some linear systems, does not provide satisfactory monotonic
solutions. Therefore, to overcome this situations, we propose a modified
slope limiter, adjusting the Van Leer’s limiter.

In Section 2, our second order upwind method is first derived for the
scalar advection equation. Section 2 also gives the analysis of dissipation
error of the method and the monotonicity algorithms. In Section 3, the
second order upwind method constructed in Section 2 for the scalar case
is generalized to linear hyperbolic systems and applied to elastic and
acoustic wave equations. Section 4 gives results of numerical experiments
for the linear advection equation, and the elastic and acoustic wave
equation.
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2. Scalar advection equation

2.1. Second order method

We first consider the scalar linear advection equation
(2) U + aug = 0, a > 0.

We discretize the x — ¢ plane by a mesh width h = Az and a time
step k = At, and use j and n for the index of discrete mesh points of
space and time, respectively.

The initial data at each time level is approximated as a piecewise lin-
ear polynomial. We denote the pointwise approximate values of the state
variables by u} = u(z;,t,) and ones for slopes by Aul/h = ugz(z;,tn).
Then, at each mesh, we may write

Au;
(3) u(z,t) = uj + ——h—]—(ac —zj), Tj_1/2 <T <Zjy1/9

Here ./, is the midpoint of z; and z;11, and is called the edge of
mesh. To derive the second order method, we use Taylor series in time
for u(z,t + k).

k2
4)  ulz,t+k)=u(z,t) + ku(z,t) + 5 un(2,t) + O(k®).

Applying (2) to (4), we have
2]€2
5) ulz,t+k) = ule,t) — akug(z,t) + ﬁz—um(x, £) + O(K3).

Replacing the derivatives in z by a finite difference to the upwind direc-
tion (upwind difference) and applying Taylor series,

w(wt+k) = ulz,t)— %?—(u(w,t) —u(z — h,t))

— %—k(l — a—:)(uz(a:,t) — ug(z — h,t))
(6) + O(K*h) + O(kh?) + O(k3).

Then, (6) gives the method for state variables

() W =~ — ) — Sl - v)(A? — Auly),

j i 3 J 2
where v is the Courant-Friedrichs-Lewy (CFL) number

_ak

(8) V=
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For stability, v should satisfy the CFL condition
k
= la|— < 1.
Q vl =laly <

It is seen that the method (7) is the result of a first order upwind
method

(10) u;-‘“ =ul —v(uj —uj_)

with a second order correction term
1
(11) —51/(1 —v)(Auj — Auj_;)

added.

(7) has the same form as equation (14) in Van Leer [7]. However, eq.
(14) in [7] is for the mesh average of state variables, while (7) is directly
for the state variables.

Now the question is how we choose the gradient Au. The accuracy
of the method (7) depends on the extra scheme for Au.

Van Leer [7] proposed three methods to determine Awu, which are
based on the central difference of neighboring nodes, the central dif-
ference of neighboring edges, and the first moment of state variables
in mesh. It was shown that the third one, based on the first moment
of state variables, was best in accuracy and stability. We denote this
method as VL3, Since VL3 is related to our new method, we rewrite the
expression here

At = 6u(l — V)@ — ) + (1 - v)(1— 2 — 2°)Au]
(12) — (3 - 6v +20%)Au} |,

where the bar means the mesh average. It is interesting that, for the
scalar advection equation, the method (7) and (12) are the same as the
discontinuous Galerkin method [8], although the approaches of the two
methods are different.

In VL3, to obtain the first moment of solutions, the full analytic
solutions at next time step should be known from the characteristics. If
this approach is applied to nonlinear hyperbolic equations, it becomes
very complicated, so that it is rarely used in nonlinear equations. Here
we derive a new and simple method for the gradient Aw from an upwind
difference for the derivative, not by using the full analytic solutions.

To determine Awu, we apply the similar approach as the derivation of
(7). Applying Taylor series for u,(z,t + k) in time and equation (2), it
gives
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27.2
(13) ug(z,t+k) = wugp(z,t) — akug,(z,t) + %—uzm(x,t) + O(k3).

Replacing u,(z,t) by the upwind difference and applying Taylor series,

ug(z, t+ k) = wuyp(z,t)— %(uz(:c,t) — uz(z — h,t))

h

k
(14) + %(ak — h)ugea(z, ) + O(kh?) + O(K®).
One can easily show that uz..(z,t) is approximated as

12

Ugze(T,) = — ﬁ(u(:c,t) —u(z — h,t))

6
(15) + ﬁg(um(x,t)+uz(x—h,t)) + O(h).
Substituting (15) into (14), we obtain

ug(z, t+k) = wug(z,t)+ 62—];(1 - El—ﬁki)(u(ac,t) —u(z — h,t))
ak ak ak ak
(16) + O(k*h) + O(kh?) + O(k?).
This gives the method for the gradients
Au}”’l = Auj +6v(1 —v)(u] —uj_4)

(17) —v(4 = 3v)Au] — v(2 - 3v)Auj_;.

Equations (7) and (17) form the full method. It is obvious from (6) and

(16) that the method (7) and (17) are second order accurate. We note

that the expression of (17) differs with VL? in the coefficients of Au?

and Au}_;. We note that, for v = 1/2, (17) becomes identical to VL3,
The matrix form of the method (7) and (17) is

(18) ( A“u )fﬂ =((1-v)A+vT7'B) ( Xu )n

J J

where
J R 7 1 11-v)
= 2 = 2
4 (61/ 1—31/)’ B (6(1/—1) -2+ 3v
and T denotes a space translation over h.

So far we assumed a > 0. A similar method can be defined for a < 0.
To extend the method to linear systems at Section 3, we need to express
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the method for arbitrary wave speeds. The general formulations of (7)
and (17) for arbitrary wave speeds are

" n n n 1 n
(19) umtl =0 — JJ(uJ-l — ujl_l) - iu(sgn(v) - V)(A“;'ll - Aujl_l)

4] J
and
Auptt = Auf +6u(sgn(v) - v)(uf, - uf, )
(20) — v(dsgn(v) — 3v)Auj, — v(2sgn(v) — 3v)Auj, 4,
where
A if a>0
(21) Jl—{j+1 if a<0.

2.2. Analysis for dissipation

In this section, we analyze the dissipation error of the second order
upwind method and compare with the Van Leer’s method. We assume
oscillatory initial data

(22) u? = g"el
Then, the translation operator is
(23) T =¢".

The amplification factor g in our case are eigenvalues of the matrix
(1 —v)A+vT~ !B in (18). Therefore, by substituting (23) into the
matrix of (18), one can obtain the amplification factor for the second
order upwind method

g= e‘i9/2[ (1 —3v + 302 cos(0/2) +i(1 — 2v)sin(6/2)
(24) + {%Vz(l —v)? - 21/2(1 ~v)%cosf

1 1/2
. _ 2 - .
+i(1 - 3v+3v%)(v 2)s1n0} }
Equation (24) satisfies

(25) g(1 —v) = e g*(v),
where the star denotes the complex conjugate. Then, from (25) the
symmetry relations hold

(26) gL =)l = lg()l,
(27) argg(l—v)+ (1—-v)8 = —{argg(v)+vb}.
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FIGURE 1. Polar plot of the radius of amplification fac-
tor |g| as a function of wave number 6 for CFL number
0.8. The curve 1 corresponds to the second order upwind
method and the curve 2 for VLS.

Van Leer showed that the three methods proposed in [7] also satisfied
the symmetry relations (26) and (27), and compared the accuracy for
v = 1/2, since the methods have a maximum dissipation error and
a zero phase error at v = 1/2 by the symmetry relations. Since our
second order upwind method and the Van Leer’s third method (VL?)
are identical for v = 1/2, the analysis given in [7] is equally applicable
to our method. Here we compare the dissipation error of our method
with VL3 for v = 0.8. Note that the CFL number between 1/2 and 1 is
widely used for linear hyperbolic systems.

Figure 1 is the polar plot of the radius of amplification factor as a
function of the wave number @ for our second order upwind method and
VL3 for v = 0.8. Figure 1 shows that the dissipation error per time step,
1—|g(v)|, of our second order upwind method is slightly larger than that
of VL3. However, the differences of error of the two methods are small
and the qualitative behaviors of dissipations are similar.

2.3. Monotonicity algorithms

It is well known that second order methods for hyperbolic systems suf-
fer from oscillations around discontinuities [1]. Various methods, such
as artificial viscosity and total variation diminishing (TVD) methods,
have been developed to overcome this difficulty [1, 9, 10]. Van Leer [7]
also proposed monotonicity algorithms, which says that, when a mono-
tonic initial value distribution is numerically convected, the resulting
distribution remains monotonic.
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Among the several monotonicity algorithms proposed by Van Leer,
the suitable choice for our problem is

(28)
min{2fu;1 — |, [Ausl, 2u; — uj_1|} sgn(Auy)
(Auj)mono = if sgn(ujq1 — u;) = sgn(Au;) = sgn(u; — uj-1),
0 otherwise.

Au; computed by (20) is adjusted by (28). Therefore, the monotonicity
algorithm is often called as the slope limiter.

(28) was derived by giving the condition that the linear function
(3) should not take values outside the range spanned by the neighboring
mesh averages. The slope limiter (28) provides a sharp resolution around
a shock and works for most of problems. However, the limiting is too
strong and gives slight oscillations in some cases. Van Leer proposed
another slope limiter, which is a function of the CFL number, to remedy
this trouble. However, that slope limiter has a complicated expression.
Therefore, we propose a modified slope limiter, by reducing the factor 2
in (28) to 1,

(29)
min{.lujﬂ — ], |Aul, |u; —uj_1|} sgn(Au;)
(A%)mod = if sgn(ujt1 — uj) = sgn(Au;) = sgn(u; — uj_1),
0  otherwise.

The limiter (28) and (29) can be derived from the concept of TVD.
In fact, the monotonicity algorithm is mathematically equivalent to the
TVD method. Recently we have derived the second order TVD region
of the upwind methods using a piecewise linear polynomial. This re-
sults will be published elsewhere. The limiter (28) and (29) correspond
to different boundaries of the second order TVD region of the upwind
methods.

The limiter (29) still guarantees the second order accuracy of the
upwind method (19) and (20). The first choice in the bracket of min
in (29) gives the Lax-Wendroff method, while the third choice gives the
Beam-Warming method [1]. We will show at the numerical example that
the limiter (29) mush be used in some cases instead of (28). We can also
expect that, by using the modified slope limiter, the resolution will be
slightly reduced, since the factor 2 in (28) has the effect of steepening
the profile.
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3. Linear systems

3.1. General formulations

The method (19) and (20) for the scalar advection equation can be
generalized for linear systems (1) by diagonalizing the matrix and apply-
ing the method of the previous section to each decoupled scalar problem.

Since the matrix A in (1) is diagonalizable by the definition, we can
decompose

(30) A= RAR™!,
where A = diag(A1, A2,.., \m) is a diagonal matrix of eigenvalues and
R = [ri]ra| - - - |rm] is the matrix of right eigenvectors. We let
_ p-1

(31) Wi=R"U}
and W' have components Wy,; so that UP = Y 7% Wy;ry,, where 7y, is
the p-th eigenvector. We also set

.| if Ap>0
(82) JP‘{j+1 if Ap <0

generalizing j; defined in (21). Then, the method (19) for each Wp;
takes the form

W;;;'H = Wy — Vp(ij - Wp,jp—l)

1
(33) _§VP(Sgn(Vp) - Vp) (Aijp - AWp,jp—l)’

where v, = k)p/h. Multiplying (33) by r, and summing over p,
m
n+l +1
Uit = ) Wyt
p=1

m
= an - Z Vp(Whpjp = Wp,jp,—-1)7p
p=1

1 m
(34) = 5 2 volsen(vp) = 1) (AWps, — AWy j,-1)7p.
p=1
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Similarly, the method (20) for gradients can be generalized for the
system and the resulting form is

AU;H'1 = AU} +62Vp(sgn(’/p) = vp)(Wpjy = Wpj,-1)7p

p=1
- Z Vp [(4 sgn(vp) — 3vp) AWp;
p=1
(35) + (2sgn(vp) — 3VP)AWP,J‘p—1)] Tp-

To remove the oscillations around the discontinuities, the monotonic-
ity algorithms discussed in the last section should be applied to each
component of AUj.

3.2. Elastic and acoustic wave equations

We take the elastic and acoustic wave equations for illustrative ex-
amples of linear hyperbolic systems. To apply the upwind method de-
scribed at the last section, all we have to do is finding eigenvalues and
eigenvectors of the matrix in governing equations.

ExAMPLE 1 (Elastic wave). Consider an isotropic elastic medium
undergoing small transient displacements. There are many ways to write
the governing equation as a first order system, according to the choice of
dependent variables. Here we choose U = (u, €)T, where u is the particle
velocity and € the strain. Then, the matrix of the linear system (1) is

(36) a=( 5 T,

where p is the density of the medium. FE is Young’s modulus from the
Hookes’s law ¢ = Fe, where o is the stress. The eigenvalues of A are
A = £+/F/p and the corresponding eigenvectors are (/E/p, £1).

EXAMPLE 2 (Acoustic wave). The governing equation for acoustic
waves in a uniform medium can be written in the form (1) with variables
U = (u,p)T, where u is the particle velocity and p the pressure. The
matrix is

(37) a=( ).

where p is the density, and ¢ the sound speed of the medium. The
eigenvalues of A are A = *c and the corresponding eigenvectors are
(1, £pc).
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4. Numerical Results

In this section, we perform numerical tests for the scalar advection
equation, and the elastic and acoustic wave equations to demonstrate
the validity of our second order upwind method. The CFL numbers are
set to 0.8 through all numerical tests given in this section.

The second order upwind method is first applied to the scalar advec-
tion equation (2) with a = 1. The initial data is a square wave

05 if —05<z<0
u(z,t =0) = { 0  otherwise.

The square wave is discretized by 25 grid points with spacing h = 0.02.
Figure 2 and 3 display numerical solutions at time ¢t = 0.496 obtained
from the first order upwind method (10) and the Lax-Wendroff method,
respectively. The exact solutions are shown by full lines for comparison.
The first order results in Figure 2 are inaccurate throughout and the
discontinuities are smeared by diffusion. Figure 3 shows that the second
order results of the Lax-Wendroff method help to sharpen steep gradients
but introduce large spurious oscillations.

Figure 4 shows numerical solutions, at the same time ¢ as Figure 2
and 3, obtained from the second order upwind method (19) and (20)
without/with using the slope limiter (28). Figure 4(a) shows that the
results of the second order upwind method have steep gradients and
also have slight oscillations after shocks. It is found that the ampli-
tude and width of oscillations of the second order upwind method are
much smaller than that of the Lax-Wendroff method. Figure 4(b) shows
that the second order upwind method with the slope limiter gives high
resolutions around shocks without oscillations.

Now, we apply the second order upwind method (34) and (35) to the
linear systems of the elastic wave. We assume p = 1 and F = 1, and
consider again a square wave for initial data

oy 1 f0<zxl
€= 1 0 otherwise.

This square wave is an idealized model for an impact in an one-dimensional
elasticity problem. The square wave is discretized by 25 grid points with
spacing h = 0.04. Figure 5 displays numerical solutions of the strain at
time t = 0.992 obtained by the second order upwind method (34) and
(35) without/with the slope limiter (28). The behavior of solutions are
similar to the scalar advection case and this result shows the validity of
our upwind method for linear hyperbolic systems.
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-0.1

FIGURE 2. Solution of u; + u; = 0 by the first order
upwind method. The initial data is a square wave. The
numerical result is shown by symbols and the exact so-
lution by full line.

FIGURE 3. Solution of u; + u; = 0 by Lax-Wendroff
method. The initial data is same as Figure 2. The nu-
merical result is shown by symbols and the exact solution
by full line.
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FIGURE 4. Solutions of u; + u; = 0 by the second order
upwind method. (a) the result not using the slope limiter,
(b) the result using the slope limiter. The initial data is
same as Figure 2. The numerical results are shown by
symbols and the exact solutions by full line.



116 Sung-Ik Sohn and Jun Yong Shin

strain

0.4

0.0 ‘: e
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FIGURE 5. Solutions of the elastic wave equation by the
second order upwind method. (a) the result not using
slope limiter, (b) the result using slope limiter. The ini-
tial data is a square wave. The numerical results are
shown by symbols and the exact solutions by full line.
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FIGURE 6. Solutions of the acoustic wave equation by
the second order upwind method using the slope limiter
(28). The numerical results are shown by symbols and
the exact solutions by full line.
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FIGURE 7. Solutions of the acoustic wave equation by
the second order upwind method using the slope limiter
(29). The initial data is same as Figure 6. The numerical
results are shown by symbols and the exact solutions by
full line.

Next, we consider the acoustic wave equation. We set p = 1 and
¢ = 1. As initial data we take u = 0 and a hump in pressure

_ /1= ((x —x0)/Z)? if |z —m0|<2Z
pl@,0) = { 0 otherwise,

with g = 0.5,Z = 0.1, and p = 0.2. The hump splits into equal left-
going and right-going pieces. This is a nice test problem, since, when
the hump is splitted, it has an infinite slope at the corners as well as the
initial smoothness region. This initial data is a half ellipse of the type
use in Zalesak [11]. Figure 6 shows the exact solutions and numerical
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solutions of the pressure at three different times obtained by the second
order upwind method with the slope limiter (28). The computational
domain [~1,1] is discretized by 100 grid points. We have checked that
the second order upwind method without the slope limiter was crashed in
the middle of computation due to oscillations. In Figure 6, overshoots
are found just after the wave is splitted and this overshoots result in
oscillatory solutions behind moving waves.

The overshoots and oscillations from the slope limiter (28) can be
fixed by the modified slope limiter (29). Figure 7 is the results of the
second order upwind method with the modified slope limiter (29). The
initial conditions and numerical parameters of Figure 7 are the same as
the ones in Figure 6. Using the modified limiter, the overshoots are much
reduced and numerical solutions are monotonic and have no oscillation.
One can also see that the diffusions at the corner of solutions of Figure 7
are slightly larger than that of Figure 6, as expected.

5. Conclusions

For the linear hyperbolic systems, the second order upwind methods
using piecewise linear functions for the approximation of solutions were
studied. We proposed a new method for computation of slopes of the
linear functions and a modified slope limiter for monotonic profile of so-
lutions. The analysis and numerical results showed that the new method
equipped with a slope limiter provides the high resolution of solutions
without oscillations and is comparable with the Van Leer’s methods.

We also showed in the numerical results for the acoustic wave equation
that the strong limiter may give overshoots and oscillatory solutions.
Therefore, we conclude that the quality of solutions from a slope limiter
depends on initial data and problems, so that the limiter should be
carefully chosen.

Our second order method based on the piecewise linear functions
can be naturally extended to a third order method using the piecewise
quadratic functions. Our results presented in this paper show that the
numerical methods for linear hyperbolic systems are still remained for
improvements in many features.
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