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Abstract

This paper discusses the application of fuzzy-ARTMAP neural network to compensate the nonlinearity of satellite communication
channel. The fuzzy-ARTMAP is the class of ART(adaptive resonance theory) architectures designed for supervised learning. It has
capabilities not found in other neural network approaches, that includes a small number of parameters, no requirements for the
choice of initial weights, automatic increase of hidden units, and capability of adding new data without retraining previously
trained data. By a match tracking process with vigilance parameter, fuzzy-ARTMAP neural network achieves a minimax learning
rule that minimizes predictive error and maximizes generalization. Thus, the system automatically learns a minimal number of
recognition categories, or hidden units, to meet accuracy criteria. As a input-converting process for implementing fuzzy-ARTMAP
equalizer, the sigmoid function is chosen to convert actual channel output to the proper input values of fuzzy-ARTMAP.
Simulation studies are performed over satellite nonlinear channels. QPSK signals with Gaussian noise are generated at random

from Volterra model. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP equalizer.
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] . Introduction

Power amplifiers used in communication systems are very
often operated near the saturation region such that the signals
are distorted due to that nonlinearity [1-4]. The traveling wave
tube (TWT), used in microwave signal power amplification,
introduces nonlinear distortions, in both amplitude (AM-to-AM
conversion) and phase (AM-to-PM conversion). When combined
with a transmitter or a receiver filter, the system constitutes a
nonlinear system with memory.

To deal with the nonlinearity, many researchers have been
concerned with applying neural networks, such as multilayer
perceptrons (MLP) and radial basis functions (RBF), to
equalizer [5.6]. The basic idea of applying neural network to
equalization comes from the fact that channel equalizer
problems can be regarded as patterns classification (detection).
However, each of these networks internally has significants
shortcomings. MLP equalizers typically require long training
and are sensitive to the initial choice of network para-
meters(especially initial weights). Also, they need to decide by
trail and error how many hidden units are needed. RBF
equalizer is simpler and fast to train, but usually require a
large number of centers, which increases the complexity of
computation. In addition, it is not easy to determine both the
number and the location of centers required to train. Recently,
Lee et al. firstly introduced a fuzzy -ARTMAP to equalize the
linear channels [7]. The paper presents the superiority of
fuzzy-ARTMAP equalizer to other neural network-basis equalizers.

In this paper, a fuzzy-ARTMAP neural network is, also,
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proposed to compensate the nonlinearity on satellite com-
munication channel. The main purpose of an proposed
fuzzy-ARTMAP equalizer is to overcome the obstacles, such
as complexity and long training, in implementing the previously
developed neural basis equalizers. The fuzzy-ARTMAP is made
of using fuzzy logic and adaptive resonance theory (ART)
neural network. By a match tracking process, the fuzzy-
ARTMAP neural network achieves an new minimax learning
rule that minimizes predictive error and maximizes the
predictive generalization. Also, it automatically learns a
minimal number of recognition categories, or hidden units. In
simulation studies for satellite channels, QPSK signals with
Gaussian noise are generated at random from Volterra model.

Section II presents nonlinear modeling for digital satellite
channel. Section III presents background of fuzzy-ARTMAP
neural network. Section IV gives the structure and learning
procedure for the fuzzy-ARTMAP equalizer. Experimental
results are provided in Section V, and Section VI gives the
conclusion.

H. Satellite Channel System

Fig.1 shows the block diagram of the bandpass-equivalent

nonlinear satellite channel. For an M-arry PSK, x(#) is
denoted as
x(n) IV \ y(n)
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Fig.1. Block diagram of nonlinear satellite channel
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where ¢, is the transmitted phase belonging to the
Mﬁ—o—'@—, m=0,1,..,M—1. As a convenient model of

a nonlinear telecommunication channel with memory, a
Volterra model, the kemels of which were obtained by
Benedetto et al, is used. By referring to [1], the symbol-rate
sampling of receiving output can be represented as

W= BT Dal—m) - -
(2k-1)
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where g(#) is a complex Gaussian down-link noise, and
2k—1(k=1,..)denotes the nonlinearity degree of a channel.
The reduced Volterra coefficients, after reduction and deletion
of the smallest, are shown in Table 1.

ll. Fuzzy ARTMAP Neural Network

ART networks are biologically motivated and were devel-
oped as possible models of cognitive phenomena in humans
and animals. Also, ART nets are designed to allow the user to
control the degree of similarity of patterns placed on the same
cluster, and provides the desirable characteristics of fast
training and user control of network complexity.

Since the advent of ART as a cognitive and neural theory
[8], a number of ART neural network architectures have been
progressively developed. These models include ART1, ART2,
ARTS3, fuzzy-ART, ARTMAP [9-12]. ART1 networks require
that the input vectors be binary. ART2 networks are suitable
for processing analog patterns. On the other hand, ARTMAP
is a class of neural network that perform incremental super-
vised learning of recognition categories. The first ARTMAP
system was used to classify inputs by the set of features they
possesses, that is, by an ordered n-tuple of binary values
representing the presence or absence of each possible feature.

Table 1. Reduced Volterra Coefficients

Linear Part

HP=1.22+70.646
H{"=0.063—7 0.001
H{"=—0.024—7 0.014
H{Y=0.036+7 0.031

3rd Order Nonlinearity

HE=0.039—7 0.022
H$=0.018—7 0.018
HE =0.035—70.035
HE=—0.040—7 0.009
HE=-0.01+70.017

5th Order Nonlinearity
Hii =0.039—7 0.022
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For several decades, the fields of artificial intelligence (AI),
neural networks, and fuzzy logic were developed by separate
intellectual communities. Recently, a growing number of models
computationally synthesize properties of neural networks, and
fuzzy logic.

Fuzzy-ARTMAP, a generalization of ARTMAP, is a neural
network architecture that performs incremental supervised
learning recognition categories and multi-dimensional maps in
response to arbitrary sequences of analogue or binary input
vectors, and learns to classify inputs by a fuzzy set of
features, or a pattern of fuzzy memberships values between 0
and | indicating the extent to which each feature is present.
As shown in Fig. 2, fuzzy-ARTMAP system includes a pair of
fuzzy ART modules (4RT, and ART:) that create stable
recognition categories in response to arbitrary sequences of
input patterns. During supervised learning,

ART, and ART, receive a stream of input patterns. These
modules are linked by an associative learning network and an
internal controller that ensures autonomous system operation in
real time. Fuzzy-ARTMAP realizes a minimax learning rule
that conjointly minimizes predictive error and maximizes
generalization. As a result, the system automatically creates
the minimal number of recognition categories needed to meet
accuracy criteria.

In fuzzy ARTMAP, the input and stored prototype are said
to resonate when they are sufficiently similar. When an input
pattern is not sufficiently similar to any existing prototype, a
new node is then created to represent a new category with the
input patterns as the prototype. The meaning of similarity
depends on a vigilance parameter o, with 0<p <1. If o is
small, the similarity condition is easier to meet, resulting in a
coarse categorization. On the other hand, if o is chosen to be
close to 1, many finely divided categories are formed. A
fuzzy-ARTMAP increases the network architecture (number of
clusters) to the minimum level necessary for perfect
performance on the training data. By selecting the desired
level for the vigilance parameter, the user has control over the
performance of the network..

The learning algorithm of fuzzy-ARTMAP is explained in
Section IV. The reader is referred to [12], for a complete
description of fuzzy-ARTMAP.



IV. Fuzzy ARTMAP Equalizer

In this study, the network is trained to reconstruct the
original QPSK signal based on the signal received after
transmission over a nonlinear satellite channel. Therefore,
input training patterns for fuzzy-ARTMAP network consist of
received signals, and the corresponding target patterns are the
originally transmitted signals. Fig. 3 shows the block diagram
of the fuzzy ARTMAP equalizer. As shown in (2), the
satellite channel exhibits the temporal behavior where the
output has a finite temporal dependence on the input. Thus,
the first form of input patterns for a fuzzy-ARTMAP equalizer
is represented as

y(m)=((n), (n—1),, A n—N+1)7" (3)

where N is the number of tap delay element in a fuzzy
ARTMAP equalizer. Equation (3) can be rearranged as

y(n)=( ¥(n), ¥(n); ¥n—1),n—1);
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Fig. 3. Block diagram of a Fuzzy ARTMAP Equalizer

where, y(n),, y(n); are the real and imaginary prat of y(),
respectively. However, this training vector, as shown in (4), is
not the proper type of input values for operating with
fuzzy-ARTMAP network, since y(#) is not the correct range
of fuzzy-ARTMAP. To deal with this problem, the binary
sigmoid function below is used to convert the given any range
to [0, 1],

1
S
1+4e™* )

where « is the steepness of sigmoid function, the x is the
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general function parameter, not related with x(x) from (2).
Arbitrary range of x cap be reduced to [0, 1] by (5). In this
research, a variety of converting functions were chosen, and
used with training. As a result, sigmoid function produced the
best result for reconstructing the originally transmitted
symbols. The proper range of o value is [0.7, 1.0]. In

addition, the property of using complement-coding in
fuzzy-ARTMAP leads to the final form of input training
vectors, Y(n),
Y(m=(y(m),,ymi)" (6)
where, y(n), is the y(n) vector after transformation by (5),
and  y(n); denotes the complement part of y(u),
y(n)=( Yor, Yois s Yer Vb, s YN-10YN—1i )s
yWi=( 1=y 1=y, 1= Vel — w4,
o l=yvonl= o) M
Yir 1+e—ay(n~k), » Vi 1+e—ay(n—k), ’
k=0,1,,N—1 ®
As described in [12], complement coding, called

preprocessing, used on-cell, and off-cell responses to prevent
category proliferation. Complement coding normalizes input
vectors while preserving the amplitudes of individual feature
activations. Without complement coding, an ART category
memory encodes the degree to which critical features are
consistently present in the training exemplars of that category.

Next thing for making the training patterns for fuzzy-
ARTMAP equalizer is find the target patterns. For example,
QPSK symbols are transmitted, the possible target vectors, T'(7),
are (1,0,0,0)7, (0,1,0,07, (0,0,1,0)7, and (0,0,0,1)".
A corresponding target for a symbol could be arbitrarily
determined.

If pure training patterns were available, they could be used
directly, but if neural networks, including fuzzy-ARTMAP, are
trained with noisy signals, preprocessing is necessary to
prevent the network from learning the noise. In this study, the
action of noisy transmission path is simulated by adding
Gaussian noise to the received signal after each possible
transmission sequence is passed through the Volterra channel
model. Then, the () with free noise is estimated by applying
the supervised K-means clustering algorithms. Details of the
K-means are given in [6].

Training algorithms:

(1) Determine the input pattern for ART,,
(or target) pattern for ART,, T(n)

(2) Create the categories:
When training starts, no category is created. For this
reason, in the beginning, a category can be made without
any competition by fuzzy rule. However, when more than
one category have already been created and a new input
comes to fuzzy-ARTMAP equalizer, the category will be
created by the following rule,

Y(x) and output
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Y(n) N\ w; |

Ci( Y(n) = 2 + | wjl ')
C] = ma-X{T; =1 Ncat}

where the C; is choice function, and N, denotes the

total number of categories created.
(3) Check if resonance occurs:

When | Y(m) A w;| | Y(n) |”' is greater than or
equal to p, a match happens. Otherwise, a mismatch
occurs. Despite that a match happens, the corresponding
target for the introduced input pattern may not be matched
with the selected category. In this case, the vigilance
parameter is increased until it is slightly larger than

14

Imaginary
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Fig. 4. Constellation of QPSK due to TWT

| Y(m) A wy| | Y(m |”'. Then, the search for
another category starts, except the previously selected
categories. The search process continues until the chosen
category satisfies the above conditions. If all the trial fail,
a new category is created.
(4) Update weights:
Once search ends, the weight vector is updated according
to the equation

w](new):B( Y(n)/\w](old))+(1_3)wl(old) (10)

where, J denotes the selected category index. When g is
set to 1, that leads to the fast learning.

(5) stopping condition:
If any new category is created for all patterns throughout
the steps(1-4) above, retraining for all patterns begins until
no category is created.

V. Simulation Results

For convenience, QPSK signal is generated using Volterra
series. Fig. 4 shows the constellation of QPSK signal with
nonlinearity effect. The reduced Volterra coefficients are used
to generate those signals. In this study, the capability of fuzzy
ARTMAP equalizer for determining the decision boundary (or
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reconstructing original symbol) is compared with that of
conventional MLP equalizer. As shown in Fig. 5(a), MLP
equalizer requires a large number of input patterns and
training epochs. Fig. 5(b) illustrates the different boundaries
for fuzzy ARTMAP equalizer due to the number of training
input patterns. In contrast to MLP equalizer, the decision
boundaries for fuzzy ARTMAP equalizer are properly
determined with just a few number of random input patterns
and training epochs. Despite of MLP equalizer's many training
inputs and epochs to make decision boundaries, its
performance is not as good as in fuzzy ARTMAP equalizer.

....................

PPN N

(a) 1000 inputs and 2000 epochs (b) 15 inputs and 3 epochs

Fig. 5. Decision boundary of QPSK (a) MLP Equalizer (b)
fuzzy-ARTMAP Equalizer

In the Fig5, -, ¥, ., and + represent the possible areas of
corresponding QPSK symbols, eq, e’%, ers‘il, and el% ,
respectively, and ranges of x axis and y axis are both (-3, 3).

Training efforts in the fuzzy ARTMAP equalizer are
compared with the MLP equalizer. MLP equalizer required
four, eight, and two number of units in the input, hidden, and
output layers, respectively. In fuzzy ARTMAP equalizer, the
number for input, category, and output units were eight, four,
and one respectively. It is seen that the number of input
units for fuzzy ARTMAP equalizer is double times as big as
in MLP equalizer. This comes from the fact that fuzzy
ARTMAP uses complement coding in input process.

The values of sigmoid steepness parameter were used in the
range (0.7, 1.0). The value of the vigilance influences the
number of categories (or clusters) formed, but fuzzy ARTMAP
networks increase the vigilance, if required, to ensure that the
training data are learned perfectly. The value for proper
vigilance parameter used in simulation was higher than 0.75,
resulting in four number of categories.

Fig. 6 shows the comparison of error rate performance
between fuzzy ARTMAP and MLP equalizer. Simulation
results above show that the training of fuzzy-ARTMAP
equalizer is much easier and faster than that of MLP
equalizer, while maintaining better error rate performance than
MLP equalizer.

4

Vl. Conclusions

A new fuzzy-ARTMAP equalizer system is designed to
solve the problems of long time of training and complexity,
which are often encountered in previously developed neural-



basis equalizers such as MLP and RBF equalizers. The fuzzy
ARTMAP equalizer is fast and easy to train and includes
capabilities not found in other neural network approaches; a
small number of parameters, no requirements for the choice of
initial weights, automatic increase of hidden units, and
capability of adding new data without retraining previously
trained data. By a match tracking process with vigilance
parameter, fuzzy ARTMAP equalizer discovers on its own the
categorical hidden units. Also, learning is stable because all
adaptive weights can only decrease in time. Throughout the
simulation studies, it was found that an fuzzy ARTMAP
equalizer performed favorably better than MLP equalizer,
while requiring just a few number of training inputs and
training epochs. The main advantage of the fuzzy ARTMAP
equalizer is fast training due to the structural simplicity of
fuzzy ARTMAP. Training speed of fuzzy ARTMAP equalizer
was approximately one seventh times that of MLP equalizer.
These features of an fuzzy ARTMAP equalizer makes its
implementation more feasible.
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Fig. 6. Comparison of Equalizer Performance
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