Effect of Periodic $N_2$-back-flushing in Paper wastewater Treatment using Carbon Ceramic Ultrafiltration and Microfiltration Membranes

탄소계 세라믹 한외 및 정밀 여과막으로 제지폐수 처리시 주기적 질소 역세척의 효과

  • 황현정 (한림대학교 생명과학부 환경시스템공학 전공) ;
  • 박진용 (한림대학교 생명과학부 환경시스템공학 전공)
  • Published : 2002.03.01

Abstract

In this study using $N_2$-back flushing, which wwas not the general back-flushing method of membranes, the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes. We could in vestigate effects of $N_2$-back flushing period, transmembrane pressure (TMP)and flow rate and find optimal operating conditions. The $N_2$-back flushing time (BT) was fixed at 40 sec, filtration times (FT) were changed in 4~32 min, TNP in $1.0~3.0kg_f/cm^2$ the flow celocities in 0.53~1.09cm/s. The optimal conditions were discussed in the viewpoints of dimensionless permeate flux ($J/J_0$), toal permeate volume ($V_T$) and resistance of membrane fouling ($R_f$). Optimal back-flushing period was BT/FT=0.167 (FT=8 min ), in which more $V_T$ was obtained than that in BT/FT=0.083 (FT=4 min) which was the most friquent back-flushing condition. Then rising TMP should increase the driving force, and more $V_T$ could be accumulated. And rising flow rate should decrease membrane fouling increase permeate flux, and more $V_T$could be produced. Average rejection rates of pollutants were higher than 95% for turbidity and 45~83% for $COD_{Cr}$, but rejection rates of total dissolved solid (TDS) were lower than 10%.

본 연구에서는 분리막의 일반적 역세척 방법이 아닌 질소 역세척을 하면서, 4종의 탄소계 관형 세라믹 한오여곽막으로 제지공장의 방류수를 처리하였을 때 역세척 주기 및 막간압력차 (TMP), 유량의 영향과 최적운 전조건을 규명하였다. 역세척시간 (BT)을 40초로 고정하였고, 정상운전시간 (FT)은 4~32분, TMP는 $1.0~3.0kg_f/cm^2$ 유속은 0.53~1.09cm/s로 변화시켰다. 또한 최적조건은 무차원 투과선속 ($J/J_0$) 및 총과여부부피 ($V_T$) 막오염에 의한 저항 ($R_f$)의 측면에서 고찰하였다. 그 결과 최적 역세척주기는 BT/FT=0.083 (FT=8분)으로 가장 빈번한 역세척 BT/FT=0.167 (FT=4분) 보다 오히려 많은 총여과부피를 얻을수 있었다. 한편, TMP가 증가할수록 구동력의 증가로 보다 많은 $V_T$를 얻을 수 있었고, 유량이 증가할수록 발생한 난류의 영향으로 막오염은 감소되고 투과유속은 증가하여 많은 $V_T$를 얻을수 있었다. 오염물질 제거율은 탁도 95% 이상, 호학적 산소요구량 ($COD_{Cr}$)45~83%로 높았으나 총용존고형물 (TDS)의 경우 10% 이하로 낮았다.

Keywords

References

  1. 화학공업과 기술 v.11 no.6 막분리를 이용한 중수도 기술 안규홍;권지향
  2. Desalination v.119 Ultrafiltration as an advanced tertiary treatment process for municipal wastewater G. Tchobanoglous;J. Darby;K. Bourgeous;J. McArdle;P. Genest;M. Tylla https://doi.org/10.1016/S0011-9164(98)00175-1
  3. J. Membrane Sci. v.151 Membrane processing of oily streams. Wastewater treatment and waste reduction M. Cheryan;N. Rajagopalan https://doi.org/10.1016/S0376-7388(98)00190-2
  4. Water Science and Technology v.41 no.10-11 Understanding membrane fouling in ultrafiltration of WWTP-effluent J. H. Roorda;J. H. J. M. van der Graaf
  5. J. Membrane Sci. v.110 Study on the microfiltration of Escherichia coli-containing fermentation broth by a ceramic membrane filter S. L. Li;K. S. Chou;J. Y. Lin;H. W. Yen;I. M. Chu https://doi.org/10.1016/0376-7388(95)00250-2
  6. J. Membrane Sci. v.93 pH and ionic strength effects on the performance of ceramic membranes in water filtraion F. F. Nazzal;M. R. Wiesner https://doi.org/10.1016/0376-7388(94)85019-4
  7. J. Membrane Sci. v.124 Particle deposition and layer formation at the crossflow microfiltration J. Altmann;S. Ripperger https://doi.org/10.1016/S0376-7388(96)00235-9
  8. J. Membrane Sci. v.176 A new method for estimating cake height and porosity during crossflow filtration of particulate suspensions H. K. Vyas;A. J. Mawson;R. J. Bennett;A. D. Marshall https://doi.org/10.1016/S0376-7388(00)00437-3
  9. Water Research v.35 no.5 Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration W. Xi;S. U. Geissen https://doi.org/10.1016/S0043-1354(00)00378-X
  10. J. Membrane Sci. v.188 Unsteady state flux response: a method to determine the nature of the solute and gel layer in membrane filtration S. K. Karode https://doi.org/10.1016/S0376-7388(00)00644-X
  11. Chemical Engineering & Technology v.22 Feed Cycling in Dead End Filtration U. Richter;W. Kohler;C. Cabassud;F. Sutter;M. Bouaifi https://doi.org/10.1002/(SICI)1521-4125(199912)22:12<1029::AID-CEAT1029>3.0.CO;2-7
  12. J. Membrane Sci. v.196 Influence of inclination on gassparged cross-flow ultrafiltration through an inorganic tubular membrane T. W. Cheng https://doi.org/10.1016/S0376-7388(01)00584-1
  13. Colloids and Surfaces A v.180 Direct pressure measurements in a hyaluronan ultrafiltration concentration polaization layer W. Zhang;C. R. Etheir
  14. J. Membrane Sci. v.132 Concentration polarization, separation factor, and Peclet number in membrane processes S. Bhattacharya;S. T. Hwang https://doi.org/10.1016/S0376-7388(97)00047-1
  15. J. Membrane Sci. v.189 Prediction of dynamic permeate flux during cross-flow ultrafiltration of polyyethylene glycol using concentration polarization-gel layer model M. Z. Sulaiman;N. M. Sulaiman;B. Abdellah https://doi.org/10.1016/S0376-7388(01)00416-1
  16. J. Membrane Sci. v.36 Ultrafiltration of macromlecular solutions and cross-flow microfiltration of colloidal suspensions. A contribution to permeate flux calculations R. Rautenbach;G. Schock https://doi.org/10.1016/0376-7388(88)80020-6
  17. International Dairy Journal v.10 Influence of operating conditions on membrane fouling in crossflow microfiltration of particulate suspensions H. K. Vyas;R. J. Benntt;A. D. Marshall https://doi.org/10.1016/S0958-6946(00)00058-3
  18. Desalination v.127 Effects of backflushing conditions on permeate flux in membrane crossflow microfiltration of oil emulsion J. Cakl;I. Bauer;P. Doleek;P. Mikulasek https://doi.org/10.1016/S0011-9164(99)00204-0
  19. J. Membrane Sci. v.159 Unstabel secondary oil/water emulsion treatment using ultrafiltration: fouling control by backflushing P. Srijaroonrat;E. Julien;Y. Aurelle https://doi.org/10.1016/S0376-7388(99)00044-7
  20. Biotechnology and Bioengineering v.60 no.1 Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing V. Kuberkar;P. Czekaj;R. Davis https://doi.org/10.1002/(SICI)1097-0290(19981005)60:1<77::AID-BIT9>3.0.CO;2-Y
  21. Water Research. v.35 no.18 Membrane and solution effects on solute rejection and productivity A. K. Zander;N. K. Curry https://doi.org/10.1016/S0043-1354(01)00169-5
  22. J. Membrane Sci. v.184 Tubular ultrafiltration flux prediction for oil-in water emulsions: alnalysis of series resistances D. A. Masciola;R. C. ViaderoJr;B.E. Reed https://doi.org/10.1016/S0376-7388(00)00625-6
  23. Desalination v.106 Filter backwash water recycling using crossflow microfiltration S. Vigneswaran;S. Boonthanon;H. Prasanti https://doi.org/10.1016/S0011-9164(96)00089-6
  24. J. Membrane Sci. v.158 Critical stability conditions in crossflow microfiltration of skimmed milk: transition to irreversible deposition G. Gesan-Guiziou;E. Boyaval;G. Daufin https://doi.org/10.1016/S0376-7388(99)00017-4
  25. J. Membrane Sci. v.186 Modelling the clarification of lactic acid fermentation broths by cross-flow microfiltration H. Carrere;F. Blaszkow;H.R. de Balmann https://doi.org/10.1016/S0376-7388(00)00677-3
  26. Ultrafiltration handbook M. Cheryan
  27. Standard method for the examination of water and wastewater(9th Ed) A. D. Eaton;L. S. Clesceri;A. E. Greenberg