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ABSTRACT

This paper presents the dynamic analysis of indeterminate rotor systems with angular contact ball bearings subject to
axial and radial loads. The reaction forces against applied radial loads significantly influence the dynamic
characteristics of angular contact ball bearings. However, the reaction forces are hard to determine in the case of
indeterminate rotor-bearing systems. To this end, this paper proposes a finite element model for indeterminate rotor
systems with angular contact ball bearings. An improved bearing model is adopted which is originated from the Harris’s
bearing dynamic model. The bearing model is also extended to include centrifugal forces due to the ball and inner ring.
This paper utilizes a new iterative algorithm for general, indeterminate rotor systems with angular contact ball bearings.
Two examples are provided to illustrate the dynamic characteristics of rotor systems with angular contact ball bearings
subject to axial and radial loads. The experimental and numerical results prove that the proposed method is useful for
the dynamic analysis of indeterminate rotor systems with angular contact ball bearings.

Keywords : Rotor-bearing system, Angular contact ball bearing (ACBB), Indeterminate system, Reaction forces, Finite
element method (FEM), Radial load, Axial load

literature that the reaction forces of bearings to applied

1. Introduction radial loads significantly influence the dynamic
characteristics of ACBB. However, the reaction forces
Angular contact ball bearing (ACBB) is often are often hard to determine in the case of indeterminate
adopted for rotating machinery such as machine tool rotor systems. Then, determination of bearing stiffness
spindle because of the inherent capabilit* to sustain both coefficients requires a systematic approach to reflect the
the axial and radial loads. In particular, increasing fact that bearing characteristics affect the reaction forces
demand toward the high productivity and accuracy has and in turn the reaction forces affect the bearing
attracted a great attention into spindle dynamics involved characteristics. Several papers, mostly based on simple,
with angular contact ball bearings (ACBBs) [1-9]. ideal rotors, have attempted integrated modeling methods
However, difficulty still remains to assess accurate and have shown the bearing and shaft interaction has a
dynamic parameters of ACBBs subject to axial and radial significant role in the dynamics of rotor systems with
loads. Since the dynamic parameters of ACBBs are ACBBs [7-9]. However, few rescarch works have been
changed by where and how ACBBs are placed [9,10], the general enough to take account of complicated
bearing parameters often become the major source to configurations of actual rotor-bearing systems.
degrade the accuracy in the dynamic analysis of rotor The dynamic model of ACBB has evolved for
systems with ACBBs. It is well known from the several decades so as to account for crucial terms. State-
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of-the-art bearing dynamic models are described in the
[1,11,12).
characteristics of ACBB are affected by many parameters

literature, e.g., Although the dynamic
such as axial preload, rotational speed, external radial
load, temperature, etc., the primary concern of this paper
is the effect of axial and radial loads on bearing
characteristics, which often becomes a critical issue for
indeterminate rotor-bearing systems. In this paper, a
finite element model is developed which can be used for
general, indeterminate rotor systems with ACBBs subject
to axial and radial loads. An iterative algorithm is

proposed to solve the integrated equations of
indeterminate rotor-bearing systems. This paper adopts
the bearing dynamic model developed in [1], but replaces
the influence coefficient method in [1] by the finite
element method for shaft modeling. In addition, this
paper resolves two major limitations in existing methods:
i.e., the inability to rotor systems with more than two
bearings and the disregard of the coupling effects
between horizontal and vertical directions.

Two examples are provided to investigate the
dynamics of indeterminate rotor systems with ACBBs as
well as to wvalidate the proposed method.  The
experimental and numerical studies show that the
proposed method is useful for the dynamic analysis of

general rotor systems with ACBBs.

2. Modeling of Rotor System with Angular

2.1 The Finite Shaft Element and Rigid Disk
Element

The finite element method has become an essential
tool for the dynamic analysis of rotor-bearing systems
[13,14] and has been applied also to rotor systems with
ACBB:s by several researchers [2-6).  The standard finite
element model of a rotor-bearing system consists of three
fundamental elements, i.e. finite length shaft, rigid disk
and discrete bearing.

Neglecting the internal and external damping of the
shaft, the matrix equation of motion for a finite shaft
element can be expressed as

e
0 m' ||z’ -g" 0|2 0 k|2 1!
ey

where Q denotes the rotational speed, and the
superscript s denotes the shaft element. {,*} and {z°}
represent the 4x1 nodal coordinate vectors in the XY and
XZ planes, respectively, and the force vectors, {f} and
{f:}, include all kinds of forces influencing the shaft
element.

The rigid, discrete disk, assuming that it is thin and
symmetric about the axis of rotation, has the equation of
motion

d sd d - d d
Contact Ball Bearings [;ﬂ OdHy . }+ Q{O dg Hy , } = {fyd} )]
m° ||z -g° 0}z S
Nomenclature
d,, = bearing pitch diameter R¢ = transformation matrix p; = inner groove center radius
E = elastic modulus Y.z = nodal coordinate vectors o = diameter ratio
f = force vector u = displacement vector, innerring @, = ball orbital speed
F = load vector groove center displacement ' 2 = rotational speed
F. = centrifugal force u,,, = inner ring motion due to
g = gyroscopic matrix centrifugal force Superscripts
. . v = ball center displacement b = bearing element
Jo= Ja~coblan matr‘1x X = axial direction d = disk element
k = stiffness matrix . @ = contact angle s = shaft element
K = load-deflection B = ball rotational angle T = transpose
parameter A
! = ball and groove center 7 ~ angular displacement Subscripts
separation 8 = displacement vector e = outer ring
m = mass matrix A = eigenvalue 1 inner ring
M = moments v = Poisson’s ratio I 7 refers to j-th ball
Q = load vector, contactload @ = angular displacement o = initial
r = radial direction p = density
R = right eigenvector
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where the superscript d denotes the disk, {y“} and
{z?} represent the 2x1 nodal coordinate vectors in the
XY and XZ planes, respectively, and {f‘} and {f‘}
are the corresponding force vectors. The element
matrices for equations (1) and (2) are well described in

the literature, e.g., [13,14].

2.2 Bearing Dynamic Model

This paper adopts the bearing model introduced in
[1,9].
account in this paper.

However, thermal expansion is not taken into
The following assumptions are
placed on the bearing model.

(@ Friction, cage forces, and thermal expansion are
ignored.
(2> Gyroscopic moments do not affect contact

deformation.

Fig. 1 shows a schematic model for ACBB [9]. The
displacement vectors for the bearing center and inner
ring groove center are defined, respectively, as

8y=0. 5, 5. 7, r.f
l=t{u, u, 6} =[Relis}

(3-1)
(3-2)

and the corresponding load vectors are

(Fy={r, F, F. M, M. =[ReI'lQ} (D
fol=10, 0. M} (4-2)

The transformation matrix for the local frame to the
global frame is defined as

0 cosg sing -—x,sing x, cosg 5)
[R¢] =1 0 0 r,sing -~r,cosg
0 0 0 —-sing cos¢

where ¢ is the angle between the vertical line and the
ball center line from the bearing center. Motions of the
ball center and ring groove centers are shown in Fig. 2
[9]. Then, the contact angles & are determined by

ll)l Slnaﬂ +ul -‘vX

(6)

tang, =

i
[, cosa, +u, —v, +u

cent
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where
_ 2 2 2
=\, cosa, +u, -v, +u,,)" +({,cosa, +u, -v,)

1= [(lw cosa, +v,) +(I,sina, + vx)z]l/2

Here «, , !, I, are the initial contact angle, the
deformed center length and the initial center length,
respectively, and v, u are the ball center motion and

the inner ring motion, respectively, #_, being the inner

cent

ring motion due to centrifugal force.  Ball-raceway
deformation is the change of center length, assuming no

clearances exist:
61' = li _loi ’ 6(.’ = le _loe (7)

Contact loads are calculated with Hertzian theory for
spherical contact:

Qi = Ki5i3/2 4 Qe = Keé.j/z (8)

where K, , K, are the load-deflection parameters
[11]. On the other hand, ball centrifugal force can be
written as

F =%mdmwf ®

¢

where @, is the ball orbital speed that can be
approximated as

0, =01+ (o +cosa,)cos(e; -—ﬁ)} (10)

(o —cosa,)cos(a, ~ )

The ball spinning axis angle with respect to the
bearing center axis can be determined by
osina, (1)

tan =
l+ocosa,

where o is the ball diameter divided by the bearing
pitch diameter.
Then, the load equilibrium at the ball is given by

Y F, =0, cosa, - Q, cos, +F, =0 (12)
ZFX: QiSinax—QeSina":O

Equation (12) is nonlinear equations to be solved for
each ball. The ball Jacobian matrix [J,]=08{F}/8{v} is

found by differentiating equation (12):

V=1, 1+[/,] 9
where
T
—gcosz a, 2 sin’ & X sina, cosa,
a6, L 1, 06,
(1=
g X sing, cosa, ‘Qsmz Q, _gcog @
| le 65e 65e 1" .
L -
_%0 o a, - 2 i 2 ['Q_ - ?‘Q“J sing; cosa
a5, L Loes)
V.1= a
Q2 % sina, cose, —@sin2 a —~Q—'cosZ a,
D a5, T

The inner ring expansion due to the centrifugal force
can be approximated as

mz 2 2
o =Ed, [p:G+vy+dia-v) (14)

where E, v are the elastic modulus and the Poisson’s
ratio, respectively. It is assumed here that the inner ring
expansion can be simply superimposed into the inner
ring center displacement as shown in Fig. 2.

Global force equilibrium is established in terms of
bearing loading and ball reaction forces at the bearing
centroid.

{F}+ §[R¢lf{Q}j ={o} (15)

where n is the number of balls. The bearing
boundary conditions have an important effect on the
numerical solution of equation (15). When loading is

given, there are five unknown displacements.
Conversely, if displacements are known, loads may be
found directly without iteration once equation (12) is
solved for each ball. However, in this paper, mixed
boundary condition is taken into account to be able to
apply two kinds of axial preloads: constant force preload
method and constant displacement method. A nonlinear
solver based on the Powell hybrid method {15] is used
for solving equations (12) and (15). The nonlinear solver
is recursively applied for equation (12) and then equation
(15) until both equations are satisfied within the specified

tolerance.
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Bearing stiffness matrix can be found from the
Jacobian matrix, using the ball Jacobian matrices:

K= {%ﬂ = - 5 [R9Y diag ([, )1, 114,10} [Rg], (16)

5xS ’;:15x3 3x3 3x5

Bearing stiffness matrix formula (16) requires the
ball Jacobian matrices that should be determined with the
solutions of equations (12) and (15).

Thus, an ACBB can be modeled, assuming axial
motion is negligible, as 16 spring coefficients (10
different coefficients): i.e.,

L

k'eg: k{’iav kh:: 3:@ ¥’ B ff an
A O A A P RV

_kﬁov gze‘, kfo\ kg“a‘.

where the superscript b denotes the bearing, K : are
the linearized i directional stiffness due to j directional
motion. {y"},{z"} are the 2x1 nodal coordinate vectors
in the XY and XZ planes, respectively, {f} and {/"}
being the corresponding 2x! force vectors. The off-
diagonal components are generally small unless a
significant amount of load is applied.

2.3 The Global System Equation and the
Associated Problems
For a typical rotor system with ACBBs, assembling
of the element matrices as described in equations (1), (2)
and (17) provides a finite element equation of motion:

[M, 4G} + QLG 1{g} + ALK 1+ K, ) gt = {f} (1)

where {q} and {f} are the global coordinate vector
and the force vector, respectively. The subscripts b and o
represent the system matrices composed of bearing
clements and the others, respectively.

To determine the reaction forces of bearings to
applied static radial loads, the corresponding static
equation should be solved. Elimination of the mass and
damping terms out of equation (18) yields

05

{{K,J+[K, ] gt =1/} (19)

By solving equation (19), one may have information
on shaft deflection and reaction forces at bearings against
static radial loads. Equation (19) is used for updating
bearing reaction forces and moments in the solution
procedure that will be described in the next section.
Equation (18) can be rewritten, in state form, as

[ARO} +[BIQ} = {F} (20)

where

0 M,
[A]= '[B
M, C, +QG,

= -M, 0
| 0 K, +K,
The eigenvalue problem associated with equation
(20) can be written as
{A4[A]+[BI} R } = {0} 2n
where 4, , {R} are the i-th eigenvalue and the
corresponding right eigenvector, respectively.

2.4 The Solution Procedure

Since the bearing coefficients are affected by external
radial loads applied to the bearings, the reaction forces of
bearings are required to be determined in advance for
obtaining the bearing coefficients. If the system is
determinate, in other words, the number of bearings is
two and moment stiffness coefficients of bearings are
negligible, the solution procedure is straightforward.
Then, the reaction forces against radial loads can be
determined only from the static force equilibrium
relation. On the other hand, if a rotor system has more
than two bearings and/or moment stiffness coefficients of
bearings are not negligible, the bearing reaction forces
are related implicitly with bearing stiffness coefficients
because of the inherent indeterminate nature. One of the
possible solution methods to this indeterminate problem
is to solve all the equations at the same time as taken in
[6]. This is a straightforward method but requires a lot of
effort to many
nonlinear equations simultaneously.

computational solve complicated

(1]

iterative algorithm, which

Jorgensen
proposed an attractive
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determines an initial reaction force distribution of
bearings assuming no moment (tilt) stiffness coefficients
are present.  Although the algorithm has been proved
successful, it is limited to the case when the number of
bearings is only two. To remove this limitation, this
paper proposes a new iterative algorithm as summarized
below:

(D. Assess the initial bearing stiffness coefficients by
solving bearing equations (10) and (15) with
disregarding the interaction between the shaft and

bearings due to radial loads.

@. Solve and obtain the reaction forces and moments
of bearings from the static force deformation
equation (19) of the system with the bearing
stiffness coefficients determined in the previous
step.

3. Put the reaction forces and moments into the

bearing equations to determine new bearing
stiffness coefficients.
@. Substitute the old coefficients by the new ones and
go to step (2).
Iterate the above three steps until the bearing
stiffness coefficients are converged. The number
of iterations is significantly dependent upon the
complexity of the system and the number of finite
elements.
Solve the eigenvalue problem as given in equation

2

3. Validation and Illustration of the Proposed
Method

3.1 A Uniform Shaft Supported by Two ACBBs
A simple experimental system is established to validate
the proposed method. Fig. 3 shows the experimental
setup. A uniform shaft, of which length and diameter are
80 cm and 2.5 cm, respectively, is supported by two
identical ACBBs. Table 1 shows the specifications of the
bearings used in the experiment.

The system is equipped with a device to apply axial
force preload to the system. The photo in Fig.3 shows
the preload device. The preload device is made of a
spring and a bolt to compress the spring. The bolt is used
to adjust axial force preload. Fig. 4 compares the first

66

three natural frequencies from the experiment and

simulation with the axial force load varied.

RS

[
S -

%:, B

Fig. 3 Experimental setup for a uniform shaft supported
by two bearings

Table 1 Bearing data for the uniform shaft system

Property Data
Type 7006C
Pitch diameter (mm) 42.5
Number of balls 14
Width (mm) 13
Ball diameter (mm) 6
Initial contact angle (deg) 15
Groove curvature 0.5199
radius/Ball diameter

a0 f
g —— Sinlated (a)
780 ’, B Measured

750 d '
720
§ 360
20 Py a a —s b}
o
= a0
00— o - -
-— -— = —a (o)
|
60
40 1 1 | 1
50 100 150 200
Preload (N)

Fig. 4 Comparison of the first three natural frequencies
from simulation and experiment for the uniform
shaft system: (a) First; (b) Second; (¢) Third
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The figure shows that the simulation results are in Table 2 Specifications of the spindle-bearing system

good agreement with the experimental results. Both the model 1)
simulation and experiment show that axial preload Element Data
. . Density, kg/m3 7800
increases natural frequencies. Measured and computed ST
modes shapes are compared in Fig. 5, which also proves Elastic modutus, N/m’ '
Element # Quter Inner Element
the adequacy of the model Dia(m) | Dia(m) | Length (m)
I 0.09 0.045 0.057
2 0.07 0.045 0.047
o4 3 0.0823 0.045 0.02
B 4 0.0823 0.045 0.02
o 5 0.07 0.045 0.0492
§ 6 0.07 0.045 0.0492
aole . 7 0.07 0.040 0.0304
. Shaft % 0.07 0.045 0.0398
1.l . ¢ 9 0.0823 0.045 0.012
- o 10 0.0823 0.0135 0.014
T 11 0.0823 0.0135 0.014
0‘00 a1 0‘2 a3 ;4 OLS 0‘! G? os 12 007 0.0135 0()14
Al drtarce {m) 13 0.0848 0.0135 0.0204
14 0.0443 0.0 0.0026
(a) first 15| 0.061 0.0 0016
16 0.0445 0.0 0.0175
o 17 0.0555 0.0 0.0155
18 0.0815 0.0 0.018
ozt 19 0.06 0.0 0.007
e 20 0.08] 0.066 0.018
owof . " A Positions Node 5 (rear)
e Double bearings at each Node 12(front)
g 02} Type 7014
Pitch diameter (mm) 20
o L Bearings Number of bails 20
o ar ez 0 eq a3 o5 a1 o8 (4 identical) Ball diameter (mm) 19
Axinl datance (m) =
Initial contact 15
angle(deg)
Groove curvature 0.5199
(b) second radius/Ball diameter

as

Table 3 Comparison of bearing stiffness coefficients

computed from the current and Jorgensen’s
methods: subjected to axial displacement
preload of 14.9 x m and radial load of 100 N

" in the y direction.
aap v — v Brg Method k” k:: kl)ﬁ\ kg:e__
o8 — GN/m GN/m KNm/rad KNm/rad
s Rear | Jorgensen | 3179.0 | 31792 | 61.827 | 61826
Current | 3179.0 3179.2 61,827 61.825
Front Jorgensen 3178 4 3178.9 61.822 61.810
(¢) third Current 3178.1 31789 61.820 61.805

Table 4 Comparison of natural frequencies computed
from the current and Jorgensen’s methods:
subjected to axial displacement preload of 14.9
4 m and radial load of 100 N in the y direction.

5 Comparison of measured and computed mode
shapes for the uniform shaft system

Fig.

5 = Speed Method Mode 1 Mode 2 Mode 3
] g e 1——1 Ol pm Hz Hz Hz
1 L}F L ;4»# ] 0 | Jorgensen 10102 1180.9 1962.8
= - 1 R T N TN M TR
lre; i ) 8 R .
i ‘ o 2000 | Jorgensen 1011.9 1182.2 1966.4
Current 1018.8 1152.0 2011.3
1021.2 1155.1 2014.7

Fig. 6 A spindle bearing model
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3.2 A Spindle-Bearing System

In order to validate the proposed method and to
investigate the dynamics of a realistic rotor system with
ACBBs, a spindle-bearing model for Mazak CNC
vertical milling machine with a small tool [1,9] is
considered as the next example. The system is shown in
Fig. 6. This spindle has four ACBBs: two pairs of
ACBB:s. Each pair constitutes so called ‘o’ configuration.

Two numerical models are made for the current
system. In order to compare the proposed method with
the Jorgensen's method [1], numerical model 1 is
established in the same manner as that in [1]: i.e., two
neighboring bearings are placed at the same node. The
detailed specifications of model 1 are given in Table 2.
On the other hand, the other numerical model (model 2)
is constructed by making a minor modification to model
1. The only difference between model 1 and model 2 is
that each bearing is placed at a different node.

At first, a simulation is performed with model 1
under an external radial load of 100 N at the last node of
spindle and a constant axial displacement preload of 14.9
4 m at all the bearings. Table 3 compares bearing
stiffness coefficients computed from the proposed
The stiffness
coefficients from the proposed method are almost

method and the Jorgensen’s method.

identical to those from the Jorgensen’s method. Table 4
compares natural frequencies computed from two
methods. There is 1~2 % difference, which is believed to
occur due to the difference in modeling techniques for
shaft elements: the finite element method in the proposed
method and the influence coefficient method in the
Jorgensen’s work. This result assures that the proposed
method can provide as good results as the Jorgensen’s
method. In addition, the number of natural frequencies
from the present method is twice that of the Jorgensen’s
method.
considers both the vertical and horizontal motions while

The reason is that the proposed method

the Jorgensen’s model takes consideration of only one
plane motion.

To see the effects of ball centrifugal force and inner
ring expansion due to centrifugal force on bearing
stiffness, Fig. 7 illustrates the variation of direct stiffness
k,, of the rear bearing with and without those effects.
Constant axial displacement preload of 149 4 m is
applied at all the bearings. It is clearly shown that the

ball centrifugal force is softening the bearing while the

inner ring expansion is stiffening the bearing. Fig. 8
illustrates the variation of &, of the rear bearing with
the axial preload varied. The direct stiffness coefficient
tends to increase as the axial preload increases but
decrease as the rotational speed increases.

On the other hand, radial load effect is investigated
by applying a radial load at the front end of the spindle.
Fig. 9 shows the direct stiffness coefficients of bearings
when a radial load of 500 N is applied to the front end of
the spindle. The bearing stiffness coefficients obviously
exhibit anisotropy, which, however, has been usually
disregarded in the dynamic analysis of spindle-bearing
systems.

- (a) :\
- = ~
24t (Lol : ; <
~
R 1 T L
0 2000 4000 6000 8000 10000

Rotational Speed (rpm)

Fig. 7 Comparison of k, : (a) with both ball and inner
ring centrifugal forces; (b) with only ball
centrifugal force; (c¢) with only inner ring
centrifugal force.

27 4 I 1
0 2000 4000 6000 8000 10000

Rotational Speed (rpm)

Fig. 8 Direct stiffness coefficient &, with axial preload

varied.
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2
gﬂm
3 —=— |B wjo radial load
gg&,_ -« + - IF wio radial load
2 = =~ IBw/ radial load

—-— |F W radial load

m 1 1 AL 1
0 2000 4000 6000 8000 10000

Rotational Speed (rpm)

k.. when a radial load of 500
N is applied at the front end of the spindle.

Fig. 9 Comparison of &

et

== 1B w0 radial load
- - - - IFwo radial load
- — IBW radial load
-~ -~ IFw radial load

o0+

[¢31) 1 L. 1 i
0 200 4000 6000 800 10000
Rotational Speed (rpm)

Fig.10 The first two natural frequencies with/without
radial load of 500N at the front end of the spindle.

In this case, natural frequencies are split with respect
to the rotational speed, due not only to gyroscopic effect
but also to bearing anisotropy. Fig. 10 shows the first
forward and backward natural frequencies with and
without the radial load of 500 N. Two distinct natural
frequencies are observed even at the stationary condition
because of the bearing anisotropy arising due to the
radial load.

Next, a simulation is performed with model 2. As
mentioned in the previous section, rotor systems with
ACBBs are not solvable with the
Jorgensen’s method. Thus, in this case, only the current

more than 2

program is run with an axial displacement preload of
14.9 4 m and a radial load of 500 N at the front end of
the spindle. The results are presented in Table 5.

69

Table 5 Comparison of bearing stiffness coefficients
from model 1 and model 2: subjected to axial
displacement preload of 14.9 x4 m and radial

load of 500 N in the y direction.

k k,
Mc1>de Bearin kv k.. 0,0, 0.0;
4 e | GNim | GNim | KNmr | KNm/r
ad ad
5
et | O30S | s
Rear 2 44 76 61.804 61.755
7
o et | S0 (0307 T
Rear 2 e 76 61.803 61.752
Front
1 T et ‘3)‘03;‘;2 61.716 | 61.486
Front ) ; 61.716 61.486
2 91 93
Front
3
T e o o [as
Front ) : 61.703 61.448
2 63 84

* Two neighboring bearings are placed at the same node.
** Each bearing is placed at a diffcrent node.

Natural frequency(Hz)

4000

6000

Rotational Speer (pm)

Fig. 11Comparison of the first two natural frequencies

computed from model 1 and model 2 for the
spindle-bearing system.

1000

Table 5 shows that the front bearing characteristics
are subject to more difference between model 1 and
model 2. However, unlike the front bearings, the rear
bearing characteristics are less sensitive to changing the
The the
characteristics are indifferent to switching model 1 to

model. reason why rear two bearing
model 2 is that the reaction forces at the rear two
bearings are almost identical to each other.

To cmphasize the difference between two models,
Fig. 11 shows natural frequencies of the spindle-bearing
Natural

frequencies of model 2 are higher than those of model 1.

system with the rotational speed varied.
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The reason is that tilting stiffness caused by two
neighboring bearings is involved in model 2. This result
claims the superiority of model 2 to model 1.

4. Concluding Remarks

This paper presented the dynamic analysis of
indeterminate rotor systems with angular contact ball
bearings. This paper proposed a finite element model
and a new iterative algorithm for general, indeterminate
rotor systems with angular contact ball bearings subject
to axial and radial loads. An improved bearing model
was adopted which is originated from the Harris’s
bearing dynamic model and is extended for including
centrifugal forces in the balls and inner ring. To validate
and illustrate the proposed method, two examples were
provided. Through the examples, the proposed method
was proved to be useful for the dynamic analysis of
indeterminate rotor systems with angular contact ball
bearings subjected to axial and radial loads. The results
also showed that axial load increases bearing stiffness
coefficients, and that ball centrifugal force (inner ring
expansion) decreases (increases) bearing stiffness
coefficients. This paper illustrated that static radial loads
cause bearing anisotropy, which is believed to be

important in the rotor dynamics point of view.
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