A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves

미세 홈 형성을 위한 마이크로 전해가공에 관한 연구

  • Published : 2002.04.01

Abstract

A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.

Keywords

References

  1. Datta, M., 'Applications of Electrochemical Microfabrication: An Introduction,' IBM Journal of Research & Development, Vol. 42, Issue 5, pp. 563, 1998 https://doi.org/10.1147/rd.425.0563
  2. McGeough, J. A., 'Principles of Electro-chemical Machining,' Chapman Hall, London, 1974
  3. Patterson, A.G., M. A. and A. M. I. E. E., 'The Evolution and Design of An Aerodynamic Gas Bearing,' Gas Bearing Symposium, March-April, Paper 1, 1965
  4. Chikamori, K., 'Possibilities of Electro- chemical Micromachining,' International Journal of JSPE, Vol. 32, pp. 37-38, 1998
  5. De Silva, A. K. M. and McGeough, J. A., 'Process Monitoring of Electrochemical Micromachining,' Journal of Materials Processing Technology, Vol. 76, pp. 165-169, 1998 https://doi.org/10.1016/S0924-0136(97)00334-8
  6. K. P. Rajurkar, D. Zhu, J. A. McGeough, J. Kozak, A. De Silva, 'New Developments in Electro-Chemical Machining,' CIRP, Vol. 48, No. 2, pp. 567-580, 2000 https://doi.org/10.1016/S0007-8506(07)63235-1
  7. Rolf Schuster, Viola Kirchner, 'Electrochemical Micromachining,' Science, Vol. 289, pp. 98-101, 2000 https://doi.org/10.1126/science.289.5476.98
  8. B. Wei, K. P. Rajurkar, S. Talpallikar, 'Identification of Inter Electrode Gap Sizes in Pulse Electrochemical Machining,' The Electrochemical society, Vol. 144, No. 11, pp. 3913-3918, 1997 https://doi.org/10.1149/1.1838110
  9. E. S. Lee, J. W. Park and Y. H. Moon, 'Development of Ultra Clean Machining Technology with Electrolytic Polishing Process,' International Journal of KSPE, Vol. 2, No. 1, pp. 18-25, 2001
  10. K. P. Rajurkar, B. Wei, J. Kozak, 'Modeling and Monitoring Inter Electrode Gap in Pulse Electrochemical Machining,' CIRP, Vol. 44, No. 1, pp. 177-180, 1996 https://doi.org/10.1016/S0007-8506(07)62301-4
  11. K. P. Rajurkar, D. Zhu, B. Wei, 'Minimization of Machining Allowance in Electrochemical Machining,' CIRP, Vol. 47, No. 1, pp. 165-168, 1998 https://doi.org/10.1016/S0007-8506(07)62809-1
  12. K. P. Rajurkar, B. Wei, J. Kozak, 'Study of Pulse Electrochemical Machining Characteristics,' CIRP, Vol. 42, No. 1, pp. 231-234, 1993 https://doi.org/10.1016/S0007-8506(07)62432-9