DOI QR코드

DOI QR Code

Radioactive Wastes Vitrification Using Induction Cold Crucible Melter: Characteristics of Vitrified Form

유도 가열식 저온용융로를 이용한 방사성페기물 유리화: 유리 고화체 특성

  • 김천우 (한국수력원자력(주) 원자력환경기술원) ;
  • 박은정 (한국수력원자력(주) 원자력환경기술원) ;
  • 최종락 (한국수력원자력(주) 원자력환경기술원) ;
  • 지평국 (한국수력원자력(주) 원자력환경기술원) ;
  • 최관식 (한국수력원자력(주) 원자력환경기술원) ;
  • 맹성준 (한국수력원자력(주) 원자력환경기술원) ;
  • 박종길 (한국수력원자력(주) 원자력환경기술원) ;
  • 신상운 (한국수력원자력(주) 원자력환경기술원) ;
  • 송명재 (한국수력원자력(주) 원자력환경기술원)
  • Published : 2002.06.01

Abstract

In order to simultaneously vitrify the ton Exchange Resin(IER) and Dry Active Waste(DAW) generated from the Nuclear Power Plants, a vitrification pilot test was conducted using an induction cold crucible melter. The PCT result evaluating the chemical durability of the vitrified from showed that the final glass was more durable than the benchmark glass. Liquidus temperature for the final vitrified form was 1048 K(775$\^{C}$) fur heat treatment experiments. The value of the compressive strength for the vitrified form was ninety times higher than the regulation limit, 34 kg/㎠. The glasses on bottom, middle and top of the CCM were homogeneous with no secondary phase. The precipitation of the magnetic metal phase was able to be avoided by simultaneously fEeding of DAW with IER containing strongly reducing organics. Volume reduction factor of 74 was achieved through the vitrification Pilot test for mixed waste.

원자력발전소에서 발생하는 이온교환수지와 잡고체를 동시에 처리하기 위하여 유도 가열식 저온용융로를 이용한 유리화 실증시험을 수행하였다. 유리 고화체의 화학적 내구성을 평가하기 위하여 최종 유리에 대해 수행한 PCT 침출 시험결과 기준유리 보다 내 침출성이 우수한 것으로 나타났다. 최종 유리 고화체에 대해 열처리 실험 결과 액상온도는 1048K (775$^{\circ}C$)로 측정되었다 유리 고화체에 대한 압축강도 측정 결과 규제치인 34kg/$\textrm{cm}^2$ 보다 약 90배 높은 값을 나타내었다. 저온용융로(CCM)의 하부, 중앙, 상부 유리 고화체의 미세구조 관찰 결과 이차상 없는 균질한 상태였다. 환원성 유기물을 함유한 이온교환수지에 잡고체를 동시 투입하여 자성 금속상 침전을 방지할 수 있었다. 유리화 실증시험을 통하여 감용비 74를 달성하였다.

Keywords

References

  1. KEPRI-94Z-17 A Feasibility Study on the Vitrification of Low-level Radioactive Waste KEPRI-KEPCO
  2. J. Kor. Ceram. Soc. v.38 no.9 Studies on the Physicochemical Properties of Vitrified Forms of the Low-and Intermediate-level Radioactive Waste(in Kor.) C-W. Kim;B-C. Park;H-M. Kim;T-W. Kim;K. Choi;J-K. Park;S-W. Shin;M-J. Song
  3. Ceramist v.3 no.6 Vitrification of Radioactive Waste: An Environmentally friendly Treatment Technology C-W. Kim;K. Choi;J-K. Park;S-W. Shin;M-J. Song
  4. Development of Vitrification Technology Development for Low-and Intermediate-Level Radioactive Waste (Ⅱ), NETEC-KHNP
  5. INEEL/EXT-98-00269 GlassForm Version 1.1 : An Algorithm for Generating Preliminary Glass Formulations for Waste Streams K. Vinjamuri;S. T. Wood;L. O. Nelson
  6. J. Am. Ceram. Soc. v.73 no.10 Control of Radioactive Waste Glass Melters: 1, Preliminary General Limits at Savannah River D. F. Bickford;A. Applewhite-Ramsey;C. M. Jantzen;K. G. Brown https://doi.org/10.1111/j.1151-2916.1990.tb06692.x
  7. Pacific Northwest Laboratory Nuclear Waste Glass Compositional Limitations L. A. Chick;J. L. Swanson;D. S. Goldman
  8. Viscosity and Electrical Conductivity of Glass Melts as a Function of Waste Composition, Savannah River Laboratory M. J. Poldinec;J. R. Wiley
  9. TR-105912, Research Project WO3500-29 Vitrification of Low-level Radioactive Waste EPRI
  10. Federal Register v.55 no.60 Method 1311 Toxicity Characteristic Leaching Procedure US EPA
  11. WSRC-TR-90-539, Product Consitency Tests(PCT)(Method Version 3.0) C. M. Jantzen;N. E. Bibler
  12. Scientific Basis for Nuclear Waste Management XIX v.412 Redox State and Transition Metal Concentration Effects on Microstructure of Simulated Simplified Glasses for Waste Immobilization C-W. Kim;I. S. Muller;A. C. Buechele;I. L. Pegg;P. B. Macedo
  13. Compressive Strength of Cylindrical Concrete Specimens, ASTM C39
  14. Ph.D. Dissertation, The Catholic University of America Studies of the Properties of Multicomponent Waste Glasses Containing Transition Metal Oxides C-W. Kim
  15. Principles of Instrumental Analysis D. A. Skoog;J. J. Leary
  16. TR.A00NJ01.M2001.12 Summary Report on the Long Duration Pilot Plant Test with Simulated Combustible Low-and Intermediate-level Radioactive Waste NETEC-KHNP
  17. Ph.D. Dissertation, Chungnam National University Leach Study on the Simulated Nuclear Waste Glass for the High-level Radioactive Waste S-S. Kim
  18. J. Kor. Ceram. Soc. v.38 no.9 Studies on the Physico Chemical Properties of Vitrified Forms of the Low- and Intermediate-level Radioactive Waste(in Kor.) C-W. Kim;B-C. Park;H-M. Kim;T-W. Kim;K. Choi;J-K. Park;S-W. Shin;M-J. Song
  19. Development of Vitrification Technology Development for Low- and Intermediate-level Radioactive Waste (Ⅱ) NETEC-KHNP
  20. Technical Position on Waste Form US NRC
  21. Vitrification Technologies for Treatment of Hazardous and Radioactive Waste US EPA
  22. Glastech. Ber. v.60 no.12 Sulfur Chemistry in a Borosilicate Melt: Part 1. Redox Equilibrium and Solubility H. D. Schreiber;S. J. Kozak;P. G. Leonhard;K. K. McManus
  23. Radioactive Waste Forms for the Future W. Lutze;R. C. Ewing(eds.)
  24. Center for Glass Chemistry Sulfur Chemistry in a Borosilicate Melt, Part I: Redox Equilibria and Solubility H. D. Schreiber
  25. J. Non-Cryst. Solids v.181 Solvations of Redox Ions in Glass-forming Silicate Melts H. D. Schreiber;M. T. Coolbaugh https://doi.org/10.1016/S0022-3093(94)00516-8
  26. J. Am. Ceram. Soc. v.70 no.8 Redox Chemistry in Candidate Glasses for Nuclear Waste Immobilization H. D. Schreiber;A. L. Hockman https://doi.org/10.1111/j.1151-2916.1987.tb05712.x
  27. Ceram. Trans. v.39 Development of the Minimum Additive Waste Stabilization(MAWS) Program for Fernald I. L. Pegg https://doi.org/10.1111/j.1151-2916.1987.tb05712.x
  28. WebElements bulletin

Cited by

  1. A Case Study on Operation of Off-Gas Treatment System of Radioactive Waste Vitrification Facility vol.38, pp.5, 2016, https://doi.org/10.4491/KSEE.2016.38.5.249