Microbe Adhesion and Organic Removal from Synthetic Wastewater Treatment using Polypropylene Media Modified by Ion-Assisted Reactions

이온 보조 반응에 의하여 활성화된 폴리프로필렌 담체를 이용만 합성폐수 처리시 미생물 부착 및 유기물의 제거

  • Seon, Yong-Ho (Department of Environmental Engineering,Sangji University) ;
  • Han, Sung (Thin Film Technology Research Center, Korea institue of Science and Technology) ;
  • Koh, Seok-Keun (Thin Film Technology Research Center, Korea institue of Science and Technology)
  • 선용호 (상지대학교 환경공학과) ;
  • 한성 (한국과학기술연구원 박막기술연구센터) ;
  • 고석근 (한국과학기술연구원 박막기술연구센터)
  • Published : 2002.06.01

Abstract

The surface of polypropylene was modified by 1 keV $Ar^+$ ion beam in an $O_2$ environment in order to enhance wettability. Contact angle of deionized water on modified polypropylene was reduced from $78^{\circ}$to $22^{\circ}$. The enhanced wettability is originated from newly formed functional groups such as ether, carbonyl, and carbonyl groups. During immersion in deionized water, the enhanced wettability has remained nearly same. After washing in water, the hydrophilic functional groups on the polymer surface have been very stable. The modified polypropylene was adopted as bio-film media to remove organics in synthetic wastewater. Microbe adhesion on the polypropylene surface was improved due to the newly formed hydrophilic groups.

친수성 표면을 만들기 위하여 산소분위기에서 1 keV의 에너지를 갖는 아르곤 이온빔을 폴리프로필렌 담체의 표면에 조사하였다. 삼차 증류수에 대한 접촉각은 개질 전의 $78^{\circ}$에서 최적의 조건에서 $22^{\circ}$까지 감소하였다. 이온 보조 반응 후의 친수성 증가는 ether, carbonyl, carboxyl 등의 새로 형성된 작용기에 의한 것이며 극성 용매에 대한 안정성이 우수하므로 활성화된 표면이 폐수 내에서도 안정하다. 활성화된 폴리프로필렌 담체를 합성폐수내의 유기물을 제거하기 위한 bio-film공정에 적용하였다. 이온 보조 반응법으로 친수성 표면으로 개질된 PP 담체는 극성 용매내에서 극성작용기가 유지되었으므로 안정된 표면 특성을 이용하여 박테리아 부착의 생물막 공정에 대한 연구를 수행하여 미생물의 부착은 표면의 염기성 극성작용기에 의하여 증진됨을 확인하였다. 합성폐수에 대한 처리 효율은 30%까지 증가 하였으며 장시간에 걸친 COD 농도 감소 효과를 나타내었으므로 이온 보조 반응법에 의하여 처리된 PP고분자를 수질 개선용의 담체로 사용하여 처리효율을 증가시킬 수 있음을 확인하였다.

Keywords

References

  1. Sadr Ghayeni, S. B., P. J. Beatson, R. P. Schneider, and A. G. Fane (1998), Adhesion of Waste Water Bacteria to Reverse Osmosis Membranes. J. Membr. Sci. 138, 29-42 https://doi.org/10.1016/S0376-7388(97)00196-8
  2. An, Y. H., R. J. Friedman (1998), Concise Review of Mechanism of Bacterial Adhesion to Biomaterial Surfaces, J. Biomed. Mater. Res.(Appl. Biomater.) 43, 338-348 https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
  3. Mittelman, M. W. (1998), Structure and Functional Characteristics of Bacterial Biofilms in Fluid Processing Operations, J. Dairy Sci. 81, 2760-2764 https://doi.org/10.3168/jds.S0022-0302(98)75833-3
  4. Dillon, R., L. Fauci, A. Fogelson, and D. Gaver (1996), Modeling Biofilm Processes using the Immersed Boundary Method, J. Comp. Phys. 129, 57-73 https://doi.org/10.1006/jcph.1996.0233
  5. Good, R. J., M. Islam, R. E. Baier, and E. Meyer (1998), The Effect of Surface Hydrogen Bonding (AcidBase Interaction) on the Hydrophobicity and Hydrophilicity of Copolymers: Variation of Contact Angles and Cell Adhesion and Growth with Composition, J. Dis-persion Sci. Technol. 19, 1163-1174 https://doi.org/10.1080/01932699808913235
  6. Han, S., W.-K. Choi, K. H. Yoon, and S.-K. Koh(1999), Surface Reactions on Polyvinylidenefluoride (PVDF) Irradiated by Low Energy Ion Beam in Reactive Gas Environment, J. Appl. Polym. Sci. 72, 41-47 https://doi.org/10.1002/(SICI)1097-4628(19990404)72:1<41::AID-APP4>3.0.CO;2-J
  7. Han, S., S.-C. Choi, W.-K. Choi, and S.-K. Koh, K. H. Yoon, and H. K. Lee (1999), Enhancing adhesion of Pt/Poly(vinylidenefluoride) by a keV $Ar^+$ irradiation in $O_2$environment, J. Mat. Sci. Lett. 18, 509-513 https://doi.org/10.1023/A:1006697621634
  8. Han, S., K.H. Yoon, and S.-K. Koh (1999), Induced Surface Reactions and Chemical States ; A Kiloelectronvolt Ion Irradiation on Simple Linear Chain tructure Polymers in an $O_2$ Environment, J. Electrochem. Soc. 146(11), 4327-4333 https://doi.org/10.1149/1.1392636
  9. Choi, S. C., S. Han, W.-K. Choi, H.-J. Jung, and S.-K. Koh (1999), Hydrophilic group formation on hydrocarbon polypropylene and polystyrene by ion assisted reaction in an $O_2$ environment, Nucl. Instr. & Meth. in Phys. Res. B152, 291-300 https://doi.org/10.1016/S0168-583X(99)00120-2
  10. Choi, W.-K., S.-K. Koh, and H.-J. Jung (1996), Surface chemical reaction between polycarbonate and kilo-electronvolt energy $Ar^+$ion in oxygen environment, J. Vac. Sci. and Tech. A14, 2366-2371 https://doi.org/10.1116/1.580024
  11. APHA(l998), Standard Methods for examination of water and wastewater, $20^{th}$ ed., p. 5-17, American Public Heath Association, Washington DC
  12. Blankenship, R E. and W. W. Parson (1979), The involvement of iron and ubiquinone in electron transfer reactions mediated by reaction centers from photosynthetic bacteria, Biochim. Biophys. Acta 545, 429-444 https://doi.org/10.1016/0005-2728(79)90152-X
  13. Callen, B. W., M. L. Ridge, S. Lahooti, A. W. Neumann, and R S. N. Sohdi (1995), Remote plasma and ultravioletozone modification of polystyrene, J. Vac. Sci. Technol. A13, 2023-2029 https://doi.org/10.1116/1.579647
  14. Drr, J., T. Hurek, and B. Reinhold-Hurek (1998), Type IV pili are involved in plant-microbe and fungus-microbe interactions, Mol. Microbial. 30, 7-18 https://doi.org/10.1046/j.1365-2958.1998.01010.x
  15. Virkhaus, R, B. R. Lucchesi, P. J. Simpson, and R. J. Shebuski (1995), The Role of Adhesion Molecules in Cardiovascular Pharmacology : Meeting Review, J. Pharm. & Exp. Thera. 273, 569-575
  16. Yukoshi, T. U. and T. Matsuda (1995), Cellular Response on a Wettability Gradient Surface with Cntinuous Variations in Surface Compositions of Carbonate and Hydroxyl Groups, Langmuir 11, 4135-4140 https://doi.org/10.1021/la00010a080
  17. Sato, H., H. Tsuji, S. Ikeda, N. Ikemoto, J. Ishikawa, and S. Nishimoto (1999), Enhanced Growth of Human Vascular Endotherial Cells on Negative Ion (Ag)-implanted Hydrophobic Surfaces, J. Biomed. Mater. Res. 44, 22-30 https://doi.org/10.1002/(SICI)1097-4636(199901)44:1<22::AID-JBM3>3.0.CO;2-A
  18. Grasso, D. and B. F. Smets (1998), Equilibrium Modeling of Pseudomonad Aggregation and Partitioning to Dolomite, J. Dispersion Sci. &Technol. 19, 1081-1106 https://doi.org/10.1080/01932699808913231