A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils

사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안

  • Park, Dug-Keun (Member, Senior Analyst, National Institute for Disaster Prevention, Ministry of Government Administration and Home Affairs)
  • Published : 2002.06.01

Abstract

In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

지진에 의한 지반거동 및 지반-구조물 상호작용 등 지반동역학적 문제분석을 위해서는 정확한 동적 토질전단탄성계수의 획득이 필수적이다. 본 연구에서는 기존의 자료를 조사분석하여 어떤 변형율에서도 활용할 수 있는 사질토 전단탄성계수 감소곡선을 위한 경험식을 제안하였다. 비소성 토질의 전단탄성계수 감소곡선의 위치와 모양은 평균유효구속압에 주로 영향을 받으므로 본 연구에서는 이 영향요소 및 최대전단탄성계수를 이용하여 변형을 증가에 의한 전단탄성계수 감소를 산정할 수 있는 방정식을 형성하였다. 최대전단탄성계수가 측정되면 제안된 식을 이용하여 특정 변형을 및 구속압에서 감소된 전단탄성계수를 산출할 수 있을 것이다.

Keywords

References

  1. Ph.D. Dissertation Cyclic Stress-Strain and Liquefaction Characteristics of Sands Alarcon-Guzmar, A.
  2. J. Geotech. Engrg. v.122 no.10 Dynamic Properties of Piedmont Residual Soils Borden, R. H.;Shao, L.;Gupta, A. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(813)
  3. Proceedings. Int. Symp. on Geotech. Engrg. of Soft Soils v.2 Dynamic Properties and Seismic Response of Soft Clay Deposits Dobry, R.;Vucetic, M.
  4. Proceedings. Earthquake Engrg. and Soil Dynamics v.1 Dynamic Modulus and Damping Relationship for Sands Edil, T. B.;Luh, G. F.
  5. Proceedings, Earthquake Engrg. and Soil Dynamics v.1 The Nature of Stress-Strain Behavior for Soils Hardin, B. O.
  6. J. SMFD v.94 no.SM2 Vibration Modulus of Normally Consolidated Clay Hardin, B. O.;Black W. L.
  7. J. SMFD v.95 no.SM6 Vibration Modulus of Normally Consolidated Clay-Closure Hardin, B. O.;Black W. L.
  8. J. SMFD v.98 no.SM6 Shear Modulus and Damping in Soils: Measurement and Parameter Effects Hardin, B. O.;Drnevich, V. P.
  9. J. SMFD v.98 no.SM7 Shear Modulus and Damping in Soils: Design Equations and Curves Hardin, B. O.;Drnevich, V. P.
  10. Dynamic Geotechnical Testing Ⅱ;ASTM STP 1213 Resonant Column Testing at Pressures up to 3.5 MPa(500 psi) Hardin, K. O.;Drnevich, V. P.;Wang, J.;Sams, C. E.
  11. J. Geotech. Engrg. v.119 no.7 Stress-History-Based Model for Ge of Cohesionless Soils Hryciw, R. D.;Thomann, T. G. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:7(1073)
  12. Proceedings, Joint US-PRC Microzonation Workshop Dynamic Soil Properties Ishibashi, I.
  13. J. Geotech. Engrg. v.118 no.5 Discussion to Effect of Soil Plasticity on Cyclic Response by Vucetic and Dubry (1991) Ishibashi, I. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(830.2)
  14. Soils and Foundations v.33 no.1 Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay Ishibashi, I.;Zhang, X. https://doi.org/10.3208/sandf1972.33.182
  15. Soils and Foundations v.17 no.3 Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands Iwasaki, T.;Tatsuoka, F. https://doi.org/10.3208/sandf1972.17.3_19
  16. Soils and Foundations v.18 no.1 Shear Moduli of Sands under Cyclic Torsional Shear Loading Iwasaki, T.;Tatsuoka, F.;Takagi, Y. https://doi.org/10.3208/sandf1972.18.39
  17. Proceedings, Int. Symp. on Pre-failure Deformation of Geomaterials v.1 Dynamic Properties of Sand at Low Confining Pressure Kanatani, M.;Nishi, K.;Tanaka, Y.
  18. M. S. Thesis Dynamic Properties of Soils Khouri, N. Q.
  19. Research Report 1177-3, Center for Transportation Research, Bureau of Engrg. Research Deformational Characteristics of Soils at Small to Intermediate Strains from Cyclic Tests Kim, D. S.;Stokoe, K. H., II;Hudson, W. R.
  20. Proceedings, Seventh World Conference on Earthquake Engineering v.3 Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range Kokusho, T.
  21. Proceedings, Tenth Int. Conference on SMFE v.1 Cyclic Triaxial Test on Sands and Course Materials Kokusho, T.;Esashi, Y.
  22. Geotechnical Earthquake Engineering Kramer, S. L.
  23. Geotechnical Testing Journal v.12 no.1 Pore-Water Pressure Buildup in Clean Sands Because of Cyclic Straining Ladd, R. S.;Dobry, R.;Dutko, P.;Yokel, F. Y.;Chung, R. M. https://doi.org/10.1520/GTJ10677J
  24. Geotechnical Testing Journal v.17 no.3 A Study of an Anisotropically Overconsolidated Silt by the Resonant Column Method Macari, E. J.;Ko, H. Y. https://doi.org/10.1520/GTJ10106J
  25. Ph.D. Dissertation Dynamic Properties of Sand under True Triaxial Stress States from Resonant/Column Torsional Shear Tests Ni, S. H.
  26. Proceedings, Int. Symp. on Pre-failure Deformation of Geomaterials v.1 Some Observation on the Static and Dynamic Shear Stiffness of Ham River Sand Porovic, E.;Jardine, R. J.
  27. Technical Note 902 Description of Stress-Strain Curves by Three Parameters Ramberg, W.;Osgood, W. R.
  28. Proceedings, Int. Symp. on Pre-failure Deformation of Geomaterials v.1 The Dependency of Small Strain Stiffness on Stress Rate and History for Fine Grained Soils: The Example of Vallericca Clay Rampello, S.;Viggiani, G.;Silvestri, F.
  29. Proceedings, Int. Symp. on Pre-failure Deformation of Geomaterials v.2 Panelist Discussion: The Dependence of G-sub-o on Stress State and History in Cohesive Soils Rampello, S.;Viggiani, G.;Silvestri, F.
  30. J. Geotech. Engrg. Div. v.105 no.GT7 Anisotropic Shear Modulus due to Stress Anisotropy Roesler, S. K.
  31. Soils and Foundations v.29 no.2 Dynamic Moduli and Damping Ratios for Monterey No. 0 Sand by Resonant Column Tests Saxena, S. K.;Reddy, K. R. https://doi.org/10.3208/sandf1972.29.2_37
  32. Report No.EERC 70-10 Soil Moduli and Damping Factors for Dynamic Response Analyses Seed, H. B.;Idriss, I. M.
  33. J. SMFD. v.97 no.SM8 Deformation Characteristics of Sands under Cyclic Loading Silver, M. L.;Seed, H. B.
  34. Proceedings, Earthquake Engrg. and Soil Dynamics v.Ⅲ Insitu and Laboratory Shear Velocity and Modulus Stokoe, K. H. II;Anderson, D. G.;Hoar, R. J.;Isenhower, W. M.
  35. Soils and Foundations v.18 no.2 Hysteretic Damping of Sands under Cyclic Loading and Its Relation to Shear Modulus Tatsuoka, F.;Iwasaki, T.;Takagi, Y. https://doi.org/10.3208/sandf1972.18.2_25
  36. Soils and Foundations v.19 no.1 Shear Modulus and Damping by Drained Tests on Clean Sand Specimens Reconstituted by Various Methods Tatsuoka, F.;Iwasaki, T.;Yoshida, S.;Fukushima, S.;Sudo, H. https://doi.org/10.3208/sandf1972.19.39
  37. J. SMFD v.94 no.SM2 Cyclic Stress-Strain Characteristics of Clay Thiers, G. R.;Seed, H. B.
  38. J. Geotech. Engrg. v.117 no.1 Effect of Soil Plasticity on Cyclic Response Vucetic, M.;Dobry, R. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  39. Proceedings, Int. Symp. on Pre-failure Deformation of Geomaterials v.1 Cyclic Deformation Characteristics of Sands in Triaxial and Torsional Tests Yamashita, S.;Toki, S.
  40. Can. Geotech. J. v.30 no.5 Dynamic Deformation Characteristics of Sands and Rockfill Materials Yasuda, N.;Matsumoto, N. https://doi.org/10.1139/t93-067
  41. J. Geotech. Engrg. v.119 no.10 General Stress-Dependent Elastic Moduli for Cross-Anisotropic Soils Yu, S.;Dakoulas, P. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:10(1568)