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ABSTRACT

In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulatio
for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. Tl
permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting tl
switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switchii
frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices
the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/
in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility
achieving maximum power tracking and output voltage regulation simultaneously with the developed neural netwo
controllers. The results proved also the fast response and robustness of the proposed control system.
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1.Introduction power densities, availability of high- energy permane
magnet material at reasonable cost, and possibility

Clean renewable energy sources such as solar and wind, rather smaller turbine diameter. Other advantages inclu

have been developed over recent years. Wind is now on the absence of brushes, slip rings, excitation windings, ai

the verge of being truly competitive with conventional excitation losses. For DC power generation, the lack

sources. A modern large electric wind energy conversion excitation control is not a limitation for terminal volta

system (WECS) may generate up to 1.5 Mw. The cost, and power control, since a diode rectifier and a dc-

weight, and maintenance needs of mechanical gearing converter system, with various control strategies, pern

between the wind turbine and the electrical generator pose load voltage and/ or load power control.

a serious limitation to the further increase in WECS power To achieve load voltage and power control usi

ratings. Direct coupled — low speed permanent magnet conventional controllers, such as PID (Proportion:

generators (PMG) are under development in response to Integral-Differential) controller, accurate mathematic

this need. Permanent magnet excitation is favoured for ~ models describing the dynamics of the system unc

developing new designs because of higher efficiency, high control is needed. This can be a limiting factor for syster

with unknown varying dynamics. Even if a model can

obtained for the system under control, unkno:
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conditions such as disturbances, drifts, and noise may
impossible to model with acceptable accuracy.
Nowadays, considerable attention has been focused o1
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‘ig. 1. Schematic of WECS with NNC.

he use of artificial neural network (ANN) in system
nodeling and control applications'' . The NN has several
ey features that make it suitable for controlling nonlinear
ystems. These features include parallel and distributed
wrocessing, and efficient non-lincar mapping between
nputs and outputs without an exact system model. Also
IN’s are characterized by the rapidity of response and
obustness, which make them attractive to control wind
:nergy conversion systems (WECS). However, in the field
»f generators, the application of NN has been developed
ecently . In [4] two NN systems were developed to
egulate the output voltage of a turbo-generator. The first
IN was used for input output mapping, while the second
YN used for the voltage regulation. In [5], NN was used to
levelop a saturation model for a synchronous generator. In
6] a NN observer was developed for on-line tracking of
synchronous generator parameters. In [7] NN was used for
nodeling rotor parameters of a round rotor synchronous
renerator. In [8] a NN was proposed to predict the
naximum value of wind turbine coefficient C, as function
of the tip speed ratio A and the blade angle, to maximize
he power captured from the wind.

In this paper, a novel control strategy for maximum
yower tracking (MPT) and output voltage regulation of a
vind energy conversion system (WECS) employing a
yermanent magnet generator (PMG) is proposed. The
MG output is connected to a diode bridge rectifier
ollowed by two buck-boost converters. A four neuron-
nput, 8-neuron hidden layer, and two-neuron output layer
weural network controller (NNC) is developed to achieve
wo goals. First, utilizing the maximum power available at
:ach wind speed, (maximum power tracking), is achieved

by adjusting the on-time of the switching device of the
first converter BB1. Second goal is to regulate the load
voltage by adjusting the on-time of the switching device of
the the second converter BB2. The feasibility of the
proposed NNC, is tested by allowing sharp changes in the
wind speed as well as step up and down changes in the
output reference voltage and deducing the NN’s responses.
Simulation results proved that the developed NNC enables
MPT and output voltage regulation, within the whole wind
speed range considered, with great accuracy. Results
demonstrated the fast response, and robustness of the
developed NNC in conjunction with the proposed WECS.

2. System Description and Modeling

The block diagram of the system adopted in this paper
is shown in Fig. 1. It consists of a two - bladed, horizontal
axis wind turbine coupled to a permanent magnet
synchronous generator. An ac-dc power electronic
interface with diode bridge rectifier and two dec-dc buck-
boost converters are used for variable-speed operation of
the wind generator supplying 110 dc voltage parallel loads.
The system is designed to achieve maximum power
tracking (MPT) and output voltage regulation within wide
range of wind speed variation by means of a neural
network controller (NNC). The NNC is designed with two
outputs,namely; the on-time d, of the switching device of
the first buck-boost converter (BB1), and the on-time d,
of the switching device of the second buck-boost
converter (BB2). The NNC is trained to adjust to d, to
achieve MPT within a wide wind speeds range (3m/sec. to
8 m/sec.), and to adjust d, to achieve output voltage
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regulation within the same wind speed range. The
subsystems modeling are described as follows:

2.1 Wind Turbine (WT)

The wind turbine rotational shaft speed @ and the
turbine power Pi at average wind velocity V,, (m/sec.),
depend on the raduis of the turbine R (m) and its tip speed
ratio A given by [8]:

A-w R

v (1)

The power captured by the wind turbine is calculated as:
P, = 0.5C,pAV,) )

where, p is the air density(kg./m’), A is the turbine rotor
cross section (m”), and C, is the power coefficient, which
is a function of A. It is subject to a fundamental upper limit
of 16/27 derived from momentum theory and known as
Betz limit.

To make an optimal use of the available wind power, it
is necessary to change the turbine speed @w in proportion
to the wind speed V,, to hold A at the value for maximum
C, as the wind speed varies. The power P, versus
rotational turbine speed at different wind speeds for the
two-bladed rotor, blade-pitch regulated, 1.6Kw wind
turbine adopted in this work, is shown in Fig. 2 .On the
same figure, the maximum power line P, at different
speeds is plotted. The maximum power transfer from the
wind is achieved by ensuring the operation along the curve
given by P, in Fig. 2. To deduce the maximum available
wind power at each wind speed, an equation relating the
maximum turbine power with the rotational turbine speed
is derived from the characteristic curve shown in Fig. 2 by
interpolation. The interpolation resulted in the following

equation for maximum wind power as function of @,:

P = 0.0005 ®> —0.00125 > +0.7 @, —-74.6 [W]
3)

2.2 The Permanent Magnet Synchronous
Generator (PMG)
A 2.25Kw, 24pole, 500rpm rated speed, permanent
magnet generator (PMG), is selected for the direct drive
proposed application. The generator output voltage varies

Power P, (KW)

6my/s

Tmw/s

a

Fig. 2. Turbine Power-Speed Characteristics.

according to the wind speeds variation. Hence, the 3-phas
output of the PMG is rectified with a full wave diod
bridge rectifier, filtered to remove significant rippl
voltage components, and fed to two consecutive dc-d
buck-boost converters. For an ideal PMG, the line to lin

voltage is given as:
V. =Ky wsino, t [V] (4

where, K, is the voltage constant and o . is the electric:

frequency related to the mechanical speed oy, by:

0, = O, (nip) [rad./sec.] (¢

where, n; is the number of poles of PMG.
Including commutation delays, the dc rectifier voltag
Vy is given as:

(3v2)
T

3w, L

T

Vy =

Vers - Id [V] (6
where, Vi, is the rms value of the PMG output voltags
Iq is the rectifier output current, and L, is the statc
inductance.

Neglecting the generator and rectifier losses, the PM(
output rectified electrical power Py, is equal to th
mechanical power input to it. Hence, for maximum powe
extraction, Py 1s set equal to P, and is calculated as:

Py = P

C max

=V, 1y (7

The value of Py, is forced to follow P, by adjustin
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the on time of the switching device of the first buck-boost
converter (BB1).

2.3 Buck-Boost Converters

Two buck-boost converters are employed in the
proposed system. The converters are chosen due to their
ability of output voltage regulation from higher or lower
input voltage values '), Fig. 3 shows the basic buck boost
converter circuit diagram. The state- space averaging
method is used for analyzing the switching circuit
performance. Assuming continuous current in the buck-
boost inductor, the averaging method is applied. For each
of the two buck-boost converters employed in the
proposed system, state variables X; and X, are chosen as
the inductor current, X, and the capacitor voltage, X,. The
switching period is T, and the on-time of the switching
device is d. Hence for the shown circuit the state equations

during switch on, i.e. the dT interval, are:
U=L({pX) (8)
0=C(pX;)+ X,/R )

where, p=d/dt, and U is the input dc voltage to the
converter. for BB1 U=V, while for BB2, U=output
voltage of BB1.

During the (1-d) T interval, the state space equations is:

L(pX) =X, (10)

- X, =C<pxz)+% (11)

Applying state space averaging, the state coefficient
matrix, A, is:

(1-d)
0 L
A= (13)
—(1-d) ~1
C RC

State- space averaged source coefficient matrix is:

d’L
B=‘ ‘ (14)

0

 —
Cl .\']l L__:ll;l:l Ry

Fig. 3. Ideal Buck-Boost Converter.

Hence, the two nonlinear state-space-averaged
equations are:
x= =D, 4 (15)
L(X,) LU
- (1-d X
C(X)) RC

2.3.1 First buck-Boost Converter (BB1)

For the first converter BBI, the on-time of the
switching device d;, is varied to achieve maximum power
tracking at variable wind speeds. The parameters of BB1
are defined by the suffix ‘1°. Hence in equations 15 and 16
BB1 parameters are substituted for by:

U=U=V,4 C=C=10mF, X, =L;= 10 mH, X, = output
voltage of BBI, and R is the equivalent input resistance
of the second buck boost converter BB2 as seen by BBI1.

2.3.2 Second Buck-Boost Converter (BB2)

The parameters of BB2 are given suffix 2°. The on-
time, d,, of the switching device, is varied to achieve
output voltage regulation within the wind speeds range
considered in this work (from 3 m./sec. to 8 m./sec.). The
parameters of BB2 in equations 15 and 16 are:

U,=output dc voltage of BB1, C=C,= 10 mF, X, =L~
10 mH, X, = output voltage of BB2, and R; = the load
resistance

3. Control Strategy

Under steady state operation, (p=d/dt=0), the equations
of the generator, the rectifier, the average of the states of
the first buck-boost converter (BB1), and the average of
the states of the second buck-boost converter (BB2)
(equations 4-7,15-16) are manipulated to achieve the two
goals of this research:

(i) Maximum power tracking, achieved by varying the
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on-time (d; ) of the switching device of the first buck-

boost converter (BB1).
(i1) Regulation of the output voltage of the conversion

system, achieved by varying the on-time (d, ) of the
switching device of the second buck-boost converter
(BB2).

Manipulating these equations, and setting dl* as the
switching time allowing MPT, and dz* as the switching
time that enables output voltage regulation, leads to the

following expressions for ( dl* ), and (d,):

4 =—2— (17)
(1+2)
where,
| 1
1 5 >
7 = [ RL )zvnns+ (RLVrn;s) _l: ”RL :l
2 Prax 2 Pax @5 LZS 3w, L
and,
* y
d; = (18)
(Ity)
where,
_ .
( ‘/EVers ]+ vl%rms 2
_[ Vref ) we Ls 2(03 L2s
y=|—tl
Pmax !

I Priax 2
i 3w, L
4. Neural Network Structure

4.1 NN Learning Strategy

A basic component of a neural network is described by
a set of interconnected weights (wy) a node activation
function, F, and a bias (0;). In this description, the output,
a; of the ith element of the network is determined by
mapping of the effective input, x;, through an activation
function at element. The output of each basic processing
zlement can be determined by different activation
functions. A convenient choice for the activation function
s the sigmoidal function given below:

1

a;, = F(y) = sigm(y) = _(1+7)

In order to establish the neural network model, the
interconnected weights (wj), and biases (6;), are trainec
according to the existing input/output patterns. The
process is intended to minimize the error between the
network outputs (d°;) and the actual outputs (a°;), for the
same inputs. By defining the error measure, EP, as the tota
quadratic error for pattern p at N, output units, i.e.:

EP =053 (dP - af’.) (19

The learning process is to adjust the weights and biase:
based on the training pattern p to minimize the erro

measure EP, in a gradient descent manner. It is clear tha
if the error measure is minimized for all patterns, the
overall measure is also minimum. Due to the analytic
nature of the sigmoidal activation function adopted here
the error minmization process can be backwardly tracec
from the output layer towards the hidden layer. As a resul
using an iterative procedure, called the generalized delt:

rule, the adjustment of the network weights and biases for

minimizing EP is obtained.

4.2 Neural network Controller (NNC) Model

One of the important aspects of applying a NN to any
particular problem is to formulate the inputs and outputs
of the NN structure under study. The proposed contro
scheme, imposing maximum power tracking and outpu
voltage regulation, dictates the outputs of the NN
controller. The NN controller is designed to give twc

outputs; these are d} and d;, as given by equations 17

and 18.

Off line training for the proposed NNC was applied
Data for off-line training can be obtained either by
simulation or experiment. For this present work, the date
is obtained by simulating the proposed WECS in open-
loop system. The simulation is carried out at random winc
speeds, and different values of reference voltage
Following the control strategy, described in section 3 of

this paper, d; and d; are calculated, which present the

targets of the NN controller.

After many trials, the developed NNC, shown in Fig. 4,
eventually employed a 4-neurons input layer, an 8-neurons
hidden layer, and a 2-neurons output layer. The input
network parametrs are:
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Wind Welocity (m /fsec.)

Fig. 5. Variation of d1 and d2 for maximum power tracking and

output voltage regulation.

the generator speed w, , the rectifier output voltage V, the

inductance current of the first converter 1.,, and the
difference between the actual output voltage and the
reference output voltage V..

For the present work, such NNC structure gave
satisfactory results with small number of neurons, hence
better in terms of memory and time required to implement
the NN in control. The transfer function used in the input
and hidden layers are the sigmoid, while purellin transfer
function is used for the output layer. The training process
has been carried out during 1000 epochs, using 6000
input-output patterns. It was designed for achievement of
maximum power tracking and voltage regulation of the
proposed WECS.

5. Simulation Results

To evaluate the performance of the NN controlled
WECS proposed in this paper, the values of d; and d;

necessary to track maximum power available in the wind
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First NN Qutput & Origfime Of BH1

0.55 q
ut & On Time Of BB2
05

NN Output, On Time Of BB1, &On Time Of BB2

0.45 . L , . . "
0 1 2 3 4 5 6 7
TIME (secs.}

Fig. 6. NNC outputs and target outputs following step rise i
shaft speed.
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NN Output, On Time Of BB1, &0n Time Of BB2
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0 1 2 3 4 5 6 7
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Fig. 7. NNC outputs and target outputs following step drop i
shaft speed.

and to regulate output voltage are first calculated from
simulation program. These values are shown in Fig. 5 a
function of wind speed. The next step is to evaluate the
performance of the developed NN controller. This is done
by exciting the proposed wind generation system witt
sudden sharp changes in wind speed and step up and dowr
changes in reference voltage and deducing the NN(
outputs responses following these variations.

Simultaneous abrupt changes in the wind speed and steg
change in the reference voltage are also applied and NNC
response plotted.

Fig. 6 shows the two outputs of the proposed NNC
following a step rise of 50 rpm in shaft speec
coresponding to change in wind speed, at constan

reference voltage. On the same figure, the values of d|

and d; required to achieve the two goals of the proposed
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Fig. 8. NNC outputs and target outputs following step rise in
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Fig. 9. NNC outputs and target outputs following step rise in
shaft speed with step rise in reference voltage.

system, i.e. the targets, are also shown. The trivial
differences between the NNC actual outputs and the
targets prove that the proposed controller accurately tracks
the targets without overshooting.

Fig. 7 shows the two outputs of the proposed NNC after
a sudden drop of 50 rpm in the shaft speed at constant
reference voltage. On the same figure, the values of

d; and d; required to achieve the two goals of the

proposed system are also shown. It is clear that the NNC
outputs coincide with the targets, thus proving the
accuracy and fast response of the controller.

Fig. 8 shows the response of the proposed NNC before
and after a step rise in the reference voltage from 110 to
150 volts for a time interval of 3 units, at constant wind
speed. Accurate tracking of NNC to reference voltage with

maximum power capturing is obvious.
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Fig. 10. NNC outputs and target outputs following step rise in
shaft speed with step drop in reference voltage.
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Fig. 11. NNC outputs and target outputs following large step rise

in shaft with step drop in reference voltage.

The NNC outputs following simultaneous step rise ir
wind speed (50 rpm) and step rise in V(40 V.)are showr
in Fig. 9. Comparing these outputs with the values of d;

and d; required to achieve the two control system goals

proves the validity of the developed NNC under suct
complicated variation. Such accurate tracking is alsc
shown in Fig. 10, where a step rise of speed (50 rpm) it
allowed with a step drop in V..r(40 V step).

In Fig. 11, the feasibility of the NNC is further tested by
comparing its output after high rise in shaft speed (10(
rpm) simultaneous with a step drop in Vi (40 V step)
with values of d; and d; required to achieve the twc

goals. The figure demonstrates the accurate tracking of the
controller to the system targets. Similar results ar
obtained in Fig. 12 where high rise in speed (100 rpm) i
allowed simultaneously with a step rise in V(40 V step).
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Fig. 12. NNC outputs and target outputs following large step rise
in shaft speed with step rise in reference voltage.
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Fig. 13. NNC outputs and target outputs following large step
drop in shaft speed with step rise in reference voltage.

In Fig. 13 NNC outputs under large step drop in the
shaft speed (100 rpm), simultaneous with a 40 volts step

rise in Vpare compared with the system targets (d] and
d; ) required to achieve the two control system goals.

Both results further proves the accuracy and feasibility of
the developed NNC.

The system is designed so that for a rise in wind speed,
leading to a rise in the output power, excess power than
load demand is stored in a battery bank. While for a
decrease in wind speed, leading to decrease in power than
load demand, load is supplied from batteries.

6. Conclusion

In this paper the feasibility of a neural network

controller developed for achieving maximum power

tracking as well as output voltage regulation, for a win
system (WECS)
permanent magnet synchronous generator, is tested. Th
PMG output is connected to a diode bridge rectifie
followed by two buck-boost converters. The propose

energy conversion employing

control strategy aims at achieving two goals: first, t
utilize the maximum power available from the wind, i.e
allow maximum power tracking, the on-time d*; of the
switching device of the first converter BB1 is varied
follow variation in wind speeds. Second goal is to regulats
the load voltage by adjusting the on-time d, of th
switching device of the second converter BB2. A fou
neurons-input, 8-neurons hidden layer, and two-neuron:
output layer neural network controller (NNC) is develope
to achieve the two goals implied by the control strategy
The feasibility of the proposed NNC, is tested b
simulating sharp changes in the wind speed as well as stej
up and down changes in the output reference voltage anc
deducing the NNC outputs response. The validity of the
developed NNC is also proved by applying simultaneou:
variation in the shaft speed and in the reference voltage
and deducing the NNC outputs response. Results provec
the accuracy of the developed NNC, its fast response anc
robustness. The relatively small number of neurons offer:
a simple way of implementing the controller.

Appendix

Wind Turbine parameters:
2-bladed, pitch- regulated, 1.6 Kw, raduis=2m.

Permanent magnet generator parameters:
2.25Kw, 24 pole, 500rpm rated speed
Ls=1.29 mH, Rs=1.5 ohm, Kv=1.2 v/rpm
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