Review on Pre-processing of Earthquake Data from KEPRI Seismic Monitoring System

Yun, Kwan Hee
Park, Dong Hee
Choi, Weon Hak
Chang, Chun Jung

ABSTRACT

Several pre-processing techniques for earthquake data from earthquake monitoring institutes in Korea including Korea Electric Power Research Institute are thoroughly reviewed. Among these techniques for removing an instrumental response, removing the non-causal ringing distortion by FIR filter, checking calibration status of seismic stations, and minimizing the window effect are introduced and applied to real data. It is also recommended that analysts evaluate S/N ratio in the frequency domain and consider the possibility of using the saturated earthquake data.

Key words: instrumental correction, window effects, non-causal ringing, saturated data, calibration status

1. 서 론

구조물에 큰 피해를 줄 수 있는 강진의 특성은, 많은 불확실성을 포함하고 논란의 여지가 있지만, 본론적으로 지진의 자기유사성(self-similarity)에 의해 중요도 지진 특성을 본론적으로 부터 예측되어, 진단측량자료를 기초로 하여 평가된다. 우리나라의 실제적인 비와 같이 중저 지진활동성 지역에 위치하고 있어 강진등 예측 연구에 필요한 중요도 이상 지진의 발생빈도가 낮아 이들 지진물에 대한 자료 수는 미약하거나 절이 좋지 않은 편이다. 따라서 중규모지진을 이용하여 강진의 특성을 파악하기 위해서는 재현된 지진측량자료로부터 정확한 뿐만 아니라 최대한 의미 있는 정보를 도출할 필요가 있다.

4개 원전부지 인근 8개 지진측량소에 설치된 전력연구원 지진측량망은 1999년 5월부터 원전 인근지역에 발생하는 미소진의 뿐만 아니라 강진을 예측하기 위해 운영되고 있으며, 실시간으로 원전부지의 지진동을 감시하여 원전 구조물 내의 지진감지시스템과 더불어 원전의 내진안전성 확보에 크게 기여하고 있다. 이러한 전력연구원 지진측량망은 기상청, 지질자원연구원, 원자력안전기술관 등 국내 지진측량망 운영기관이 제작한 시스템과 유사하여 본 연구결과는 국내

에서 관측된 여러 지진측량자료에 광범위하게 적용될 수 있을 것이다. 본 연구에서는 전력연구원 지진측량망을 구성하는 기기 를 중심으로 주파수특성에 대해 검토하고 이러한 특성이 계측기계에 어떠한 영향을 주는지 평가하고 실질적인 지진자료 분석이전에 고려해야 할 사항과 일반적인 자료처리 기법, 적용사례 및 스펙트럼의 활용 가능한 수치와 대역을 극대화 할 수 있는 여러 방안에 대해 고찰해 보고자 한다.

2. 본론

2.1 전력연구원 지진측량자료 처리시스템 개요

전력연구원 지진측량망의 특징은 공학적인 목적과 지진학적인 목적을 효율적으로 달성하기 위해, 지진계측기는 습도계와 가속도계로 이중화하고 지진계측기는 high dynamic range의 24bits A/D 보다를 장착하고 있으며 지진자료의 저장은 가속도 100Hz 및 수소 20Hz에 대해 이루어지고 있다. 그림 1은 전력연구원 지진측량망의 자료처리 흐름을 나타내는 모식도이며 표 1은 구성 기기의 중요한 특성을 정리한 표이다.

그림 1에서 FS2DSM, F96CM, FS2DS, F96C, F260 등은 기록 내부에서 downsampling하기 위해 사용되는 FIR(finite impulse response) 디지털 필터의 이름이다. 이 FIR 필터중 F96CM, FS2DS는 각각 100Hz 및 20Hz 기록에 영향을 주는
표 1 전력연구원 지진관측소 지진저역처리 흐름도

<table>
<thead>
<tr>
<th>구성 기기</th>
<th>모델</th>
<th>제원</th>
</tr>
</thead>
<tbody>
<tr>
<td>속도계</td>
<td>JC-V100-3D-CC (Markland)</td>
<td>• Type: moving coil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Natural frequency: 1Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• coil resistance: 4.8Ω</td>
</tr>
<tr>
<td>가속도계</td>
<td>FRA Episensor (ES-1X/Kinematic)</td>
<td>• 8 channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q4128G-10E16 (Quentera)</td>
<td>• 20V differential</td>
</tr>
</tbody>
</table>

필터의 이름(임의의 영역). 그림 2는 F96CM과 FS2D5의 주파수응답 및 impulse response를 나타내는 그림이다. 그림 2에서 알 수 있는 바와 같이 F96CM은 minimum phase인 casual 필터이며 FS2D5는 linear phase를 갖는 non-causal 필터임을 알 수 있다. 일반적으로 높은 sampling rate를 갖는 기록은 차동을 분석하기 위한 용도로 사용되며 이를 위해 minimum phase FIR 필터를 사용하며 낮은 sampling rate를 갖는 기록은 시간영역에서 심호의 외곽을 방지하기 위해 linear phase 필터를 사용한다.\(^{[5]}\)

그림 3은 전력연구원 지진관측망 구성기기 중 속도계에 대한 주파수 응답을 대부분의 관측소는 critical damping 70%, 고유주파수 1Hz를 갖고 있으며\(^{[5]}\) 기록의 입력단계에서 8배 증폭되며 센서의 감도범위는 3.5~3.9V/kine이다. 그림 3에서 알 수 있듯이 1Hz 부근이미지에서 주파수표적에 외곽이 있으며 터서는 전 주파수대역에서 비선형성을 갖고 있다.\(^{[5]}\)

가속도 센서로 사용되고 있는 EpiSensor-T의 진폭 스펙트럼은 0~50Hz 주파수 구간에서 상수에 가까우며 위상 스펙트럼은 선형으로서 미약한 시간지연을 갖고 있다.\(^{[9]}\) 이하의 토론에서는 주파수 외곽특성을 갖는 속도 센서에 대해서만 그 영향을 평가하기로 한다.

그림 4는 이상에서 언급한 센서와 기록계의 주파수 특성에 의해 계측되는 파형이 어떠한 영향을 받는지를 중심으로 시뮬레이션한 결과이다. 각각의 입력 신호로는 6차 30Hz Butterworth 저주파동과 필터의 impulse response를 가정하였다. 그림 4의 (a), (b)로부터 속도계(JC-V100) 및 F96CM 필터에 의해 약간의 파형의자 극치가 관찰되며 그림 4(b), (d)로부터 F96CM 및 FS2D5 필터에 의해 시간정밀을 확인할 수 있다. F96CM 필터의 시간정밀은 0.042sec(=4.12/100)로 기록되어 있으며 FS2D5의 시간정밀은 0.795sec이며 이때 F96CM 필터의 시간정밀의 의미는 Nyquist 주파수 70%에서의 group delay time을 의미한다.\(^{[6]}\) 이러한 시간정밀은 관측기기 자체 동 동으로 보정됨으로 사후 분석시 별도의 보정이 필요없다. 한편 그림 4(d)에는 linear phase 필터인 FS2D5에 의해 도착시간이 미리에 생성되는 non-causal ringing 현상이 확인되고 있으며 이후에 이에 대한 문제점에 대해 토론자 한다.

2.2 속도계 계기응답정밀

앞서 살펴본 바와 같이 전력연구원 지진관측망에서 사용하는 JC-V100 속도계는 1Hz 미만에서 주파수응답이 왜곡됨으로 이하의 주파수를 지진분석에 활용하기 위해서는 계기정밀이 필수적이다. 계기정밀에 대한 여러 방법은 정립되어 있으나 본 연구에서는 시간영역에서의 디지털 필터 방법을 적용하여 계기정밀을 수행하였다. 시간영역에서의 필터링을 위해서는 먼저 속도계의 아날로그 응답을 s-plane 영역에서 수치 모델화하고 이를 bilinear transform하여 이산영역인 z-plane 영역에서의 필터계수를 구하는 과정이 필요하며 다음과 같은 변환 관계식을 이용한다.

\[z = \frac{1 + (T/2)s}{1 - (T/2)s}, \quad T \text{ is sampling interval} \]

(1)

\[T(s) = \frac{s^2}{s^2 + 2\omega_n \omega_s s + \omega_n^2}, \quad \omega_n = 2\pi f_0 \]

(2)

여기서 \(h \)는 critical damping 값이며 \(f_0 \)는 속도계의 고유 진동수이다. 따라서 속도응답에 의한 외곽을 제거하기 위해서는 아날로그 응답 \(T(s) \)에 대한 이산영역에서의 필터계수를 계산해야 하며 이는 식 (1), (2)을 이용하여 계산할 수 있다. 계산 결과는 (3)와 같이 표시되며 sampling rate에 따른 분모, 분자의 필터 계수 \(b(n), a(n) \)을 표 2와 같다.

\[T(z) = \frac{b(1) + b(2) \cdot z^{-1} + b(3) \cdot z^{-2}}{a(1) + a(2) \cdot z^{-1} + a(3) \cdot z^{-2}} \]

(3)
그림 2. FIR 필터의 주파수응답 및 impulse response (단위: time(sec), group delay(sec))
표 2에서 기록이 20Hz, 100Hz인 경우 이를 40Hz, 200Hz로 보간해도 속도보정을 실시하였는데, 이는 s-plane 위상응답과 z-plane 위상응답을 서로 최대한 일치시키기 위해서이다.

그림 5는 아날로그 영역과 이산영역에서의 주파수응답을 비교한 그림으로 서로 잘 일치함을 알 수 있다.

이상에서 도출된 디지털 필터 계수 $b(n)$, $a(n)$를 이용한 속도계기보정은 식 (4)에 의해 이루어질 수 있다.

$$a(1)y(n) = b(1)x(n) + b(2)x(n-1) + ... + b(nb+1)x(n-nb) - a(2)y(n-1) - ... - a(na+1)x(n-na)$$

(4)

도출된 속도계기보정 디지털 필터 계수 $b(n)$, $a(n)$을 검증하기 위해 센서 검정이 잘 되어있고 비교적 큰 규모의 지진(경주지진(1996년 6월 2일), WSB NS, SE)에 대해 기록된 속도 자료와 가속도자료를 이용하여, 1Hz 미만이 계기보정된 속도자료와 가속도자료를 그림 6과 같이 비교하여 보았다. 이때 속도계 계기보정된 기록의 저주파는 0.2Hz 6차 Butterworth 고주파 통과필터를 입력신호에 대해 순방향 그리고 역방향으로 적용하여 제거과 임력 신호의 위치에 변화가 없도록 하였다. 비교 결과 그림 6에서와 같이 계기보정 결과가 왜곡이 없는 가속도응답과 잘 일치함을 확인할 수 있다.

그림 4 전력연구원 관측시스템의 시간영역응답 시뮬레이션

<table>
<thead>
<tr>
<th>Sampling rate에 따른 시간영역의 속도계 보정 계수</th>
<th>$b(n)$</th>
<th>$a(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40Hz(20Hz 기록에 적용)</td>
<td>$(1.1161e + 000 - 1.9677e + 000 8.9621e - 001)$</td>
<td>$(1 -2 1)$</td>
</tr>
<tr>
<td>200Hz(100Hz 기록에 적용)</td>
<td>$(1.0222e + 000 - 1.9995e + 000 9.7826e - 001)$</td>
<td>$(1 -2 1)$</td>
</tr>
</tbody>
</table>
2.3 지진감속자료의 선택

일반적으로 지진감속자료를 이용하여 지진특성을 분석하기
고자 할 경우 가장 먼저 부딪히는 문제는 동일 지진에 대해 여러 지진관측소에 기록된 지진관측자료 중 어떤 지진관측자료를 선택해야할 지의 문제이며 이때 고려해야 할 사항은 다음과 같이 정리될 수 있다.

1) 지진관측소의 지반조건
2) 자료의 정밀도
3) 자료의 정확도
4) 자료의 S/N 비 정도

지반조건은 지진관측자료에 큰 영향을 줄 수 있는데, 견고한 지반조건의 지진관측소에서 촬영된 자료가 도약이나 구조물 내에 촬영된 자료보다 선호된다. 관측자료의 정밀도란 지진계 및 기록계 등의 동적범위(dynamic range)와 관련된 특성으로 계측시스템의 동적범위가 클수록 보다 정밀한 지진계측이 가능하며 현재 국내 대부분의 지진관측소는 이러한 고정밀도 시스템을 구비하고 있다. 관측자료의 정확도는 0.5 센서의 검정설(calibration) 상태와 관련된 문제로서 지진자료의 phase 해석이에 스트랙트럼 해석을 하기 위해서는 반드시 활용어야 하는 지진관측소의 검정설 상태를 정확하게 활용할 필요가 있다. 검정설은 지진관측소를 운영하는 기관에서 정기적으로 수행하게 되어있으나 검정설 자료의 활용이 어려우를 경우도 존재한다. 이런 경우 만약 지진관측소에 속도계가 가속도계가 동시에 설치되어 있다면 그림 9와 같이 특정 시간에 대한 스팟트럼을 상호비교함으로써 상대적인 검정설 상태를 확인할 수 있으며 그림 9는 비교적 정교한 수의 야외형과 비교한 지진관측소의 예이다. 국내의 주요 지진관측소에는 대부분이 속도계와 가속도계가 동시에 설치되어 있기 때문에 이 방법은 간단하면서도 매우 유용한 방법이 될 수 있다. 관측자료의 S/N비는 분석자가 지진관측자료를 사용여부 판단 시 결정적인 기준이 될 수 있는데 일반적인 경우 분석자가 시간이익을 시각적으로 확인하여 취사선택하는 분석자의 주관이 다양한 부분이다. 그러나 많은 경우 시간영역에서의 S/N비가 좋지 않아 보여도 주파수영역을 선별적으로 사용할 수 있음에도 지진자료가 비뢰하지는 경우가 있다.

그림 10은 시간영역에서의 S/N비를 갖는 한 예로 비교적 작은 규모의 지진에 대해 원거리에서 기록된 것이다. 분석자의 주관적인 차이는 있을 수 있으나 이러한 자료가 비뢰지는 가능성을 배제할 수 없다. 그러나 이러한 자료는 스팟트럼을 선별적으로 이용함으로써 지진해석에 활용될 수 있다. 그림 11은 그림 10의 시간영역에 대한 주파수 영역에서의 S/N비를 나타내는 그림이다. 그림 11에서 실선은 cosine tapering(10%) 된 S와 window에 대한 수평 스팟트럼의 벡터함이, 점선은 임류(그림 10의 정선 구간)에 대한 스팟트럼으로 S와 window 간이 동일한 window 시간에 대해 계산되었다. 임류에 대한 스팟트럼은 power spectrum의 좌우균으로 추정된 스팟트럼 수준이다. 그림 11에서 알 수 있듯이 분석자가 S/N비 이상의 스팟트럼을 사용하려 한다면 대략 주파수 1~15Hz 사이의 스팟트럼 정보는 활용할 수 있다. 이하에서와 같이 지진관측자료의 취사선택에 있어서 시간영역 및 주파수 영역

그림 8 그림 7의 window에 대한 스팟트럼 분석 결과비교 및 시간영역 속도계 개기보정 결과

그림 9 속도계와 가속도계가 동시에 있는 지진관측소에 대한 분석법 가속도 스팟트럼 비교
2.4 포화된 관측자료의 활용 여부

중규모 지진 발생시 근거리에서 관측된 지진자료는 자주 포화되는 데 일반적으로 포화의 정도와 관계없이 이러한 자료는 이용되지 않고 있다. 본 절에서는 포화정도에 따른 지진관측자료의 활용성 여부를 평가하고자 하며, 이를 위해 먼저 관측자료의 포화정도가 스펙트럼에 어떠한 영향을 주는 지를 살펴보기 위해 가상적인 지진신호에 대해 시뮬레이션을 수행하여 보았다. 시뮬레이션은 최대 진폭의 90%, 80%, 70%, 60%, 50% (그림 12의 F0.9, F0.8, F0.7, F0.6, F0.5) 포화를 가정하였을 경우에 스펙트럼의 변화를 살펴보는 절차로 수행되었다. 입력신호로는 8차 Butterworth 저주파 필터가 이용되었다.

그림 12의 시뮬레이션 결과 포화정도가 심각수록 평균적인 스펙트럼의 수준이 감소되고 있으며 이는 Parseval의 정리로부터 예상되는 결과이다. 그러나 이상의 시뮬레이션 결과는 평판역 에너지를 갖는 가상적인 입력신호에 대한 결과이며, 실제 관측자료의 경우에 대해 포화 정도에 따른 스펙트럼 영향을 살펴보기 위해 그림 13과 같이 실제자료를 대체하여 그림 12와 동일한 시뮬레이션을 수행하였다. 이에 선택한 관측 자료는 1997년 6월 26일, 1998년 1월 28일 발생한 지진으로 아래의 점이 대부분의 관측소 기록이 포함되었다. 동일 지진에 대해 여러 관측소에 제속된 기록의 스펙트럼 특성이 유사하다고 가정하면 포화되지 않은 지진기록에 대한 시뮬레이션 결과로부터 포화된 스펙트럼의 활용여부를 간접적으로 추정할 수 있다.

그림 13에서 수행된 실제 관측기록에 대한 시뮬레이션 결과 주요 주파수대역(1~10Hz)에서는 스펙트럼의 변화가 있는 것으로 확인되었다. 따라서 동일 지진에 대해 포화되어 기록된 다른 관측소의 자료로 실험적으로 활용될 수 있다. 특히 그림 13(c), (d)의 경우처럼 포화정도에 대해 스펙트럼의 변화가 거의 없는 경우도 확인되었다. 이상의 결과로부터 지진 관측자료의 대부분은 어느 정도 보정되어서 스펙트럼에는 큰 영향을 미치지 않을음을 예상할 수 있으며, 특히 주요 주파수대역에 대해서는 자료를 선별적으로 활용할 수 있다.

2.5 Window 적용에 따른 저주파 스펙트럼 폭급 최소화

일반적으로 S와 지진원을 단일코너주파수의 a^2 모델로 가정할 수 있으며 이 이론에 따르면 가속도 스펙트럼의 저주파에서는 각주파수에 비례하는 스펙트럼 수준이 예상된다. 그러나 실제자료에 대한 S와 window구간에 대해 저주파 S
그림 13 실제 관측기록에 대한 포화정도에 따른 스펙트럼 왜곡 영향

그림 14 Window 효과에 따른 저주파 스펙트럼의 왜곡 현상

하트릴을 보면 S/N비가 충분히 클에도 불구하고 저주파 영역에서 스펙트럼 수준이 커지는 비물리적인 양상을 나타낼 수 있다(그림 14). 이러한 효과는 S과 window 창의 영향으로 그림 15는 본 연구에서 사용된 window 창에 대한 스펙트럼을 다. S와 window 효과는 window 구간 신호에 포함된 DC 성분이 많음수록 그 효과가 커질 수 있다.
S과 window 구간 내 신호의 DC 성분을 최소화하기 위해서 일반적으로 사용되는 방법은 변위값에서 DC 경향을 제거하는 방법이 적용되고 있다. 가속도 자료로부터의 변위 계산은 주파수 영역 혹은 시간영역에서 수행될 수 있으나 주파수 영역에서의 계산은 특이점(singularity)을 포함하는 매우 불안정한 과정이므로 본 절에서는 시간영역에서의 적분방법을 이용하였다.

시간적분방법으로 주로 활용되는 방법으로는 trapezoidal 방법이 있는데 이 경우 진폭주파수응답이 그림 16처럼 왜곡될 수 있다. 이때 trapezoidal 적분 과정에 대한 주파수응답은 다음과 같이 계산되었다. trapezoidal 방법에 의한 적분은 다음과 같다.

\[
\int_0^x y(x) dx = \frac{1}{2} \left[y_0 + 2y_1 + \ldots + 2y_{n-1} + y_n \right], \quad h = \Delta x
\]

(5)

식 (5)로부터 특정 시점에서의 적분값 y(n)은 현재 입력값 x(n) 및 이전 입력값 x(n-1)와 이전 적분값 y(n-1)으로 식 (6)과 같이 반복적으로 계산될 수 있다.

\[
y(n) = \frac{1}{2} (x(n)+x(n-1)) \times 0.01 \quad (100Hz 센서링인 경우) + y(n-1)
\]

(6)

식 (6)은 식 (4)의 디지털필터링 과정으로 가정하여 이에 대한 주파수응답을 계산한 결과가 그림 16이다. 이때 a(n), b(n)은 식 (6)로부터 얻어진 a=1, b=1/2 1/2 0.01이 사용되었다. 그림 16에서 시간영역에서의 적분은 안정적이기 때문에 고주파 영역에서 진폭스펙트럼이 왜곡될 수 있다. 따라서 본 연구에서는 고주파 진폭스펙트럼 왜곡을 방지하기 위해 입력 신호를 저주파 성분과 고주파 성분으로 분리하여 저주파 성분에 대해서만 trapezoidal 적분을 통해 변위값을 얻은 후 경향(trend)을 제거하였다. 저주파 및 고주파 성분 분리는 여러 가지 방법이 있으나 여기서는 level-3 discrete Meyer wavelet을 이용하여 분리하였다.\(^{(1)}\) 그림 17
은 이상의 절차를 도식화한 그림이다. 이때 변위영역에서의 정향제거는 변위 3차함수로 근사시킨 후 제거하였다.

그림 18은 이상에서 기술한 방법을 그림 14의 저전적 자료에 적용한 결과이다. 그림 18에는 결과의 타당성 비교를 위해 이론적인 a^2 모델을 사용할 경우 예상되는 저주파 스펙트럼을 함께 도시하였다. 또한 그림 18에는 일반적인 방법으로 신호강장 성분을 제거했을 경우의 스펙트럼 결과와 그림 16의 방법을 적용했을 경우의 결과를 비교하였다. 두 방법의 적용 결과에 대한 비교에서 알 수 있는 바와 같이 그림 16의 방법을 적용했을 경우 더욱 더 높은 주파수에서 a^2 모델과 근접함을 알 수 있다. 일반적인 방법으로 스펙트럼을 계산한 다면 대략 0.8Hz까지 밖에 이용할 수 없으나 상기 방법을 적용하여 5과 window 구간내의 DC 수준을 최소화한 결과 0.3~0.4Hz까지의 낮은 주파수 성분도 활용할 수 있게 되었음을 알 수 있다. 그림 18에는 wavelet 분해된 신호에 대한 스펙트럼을 함께 대비하였는데, 저주파에서 분리된 신호 (wavelet approximation)는 10Hz이하의 스펙트럼을 갖고 있음을 확인할 수 있다. 한편 그림 16의 방법을 여러 신호에 적용한 결과 저주파에서의 S/N 비가 높은 경우(약 10 이상) 사용할 수 있는 방법이며 그렇지 않은 경우에는 고주파 성분 스펙트럼에 큰 영향을 가하지 않는 것으로 평가되어 적용에 많은 주목을 필요로 한다.

2.6 Non-causal ringing에 의한 파형왜곡 보정

그림 4(d)에서 문제점으로 언급된 바와 같이 QUANTERRA 기록자의 FIR 필터인 FS2D5에 의해 non-causal ringing 현상이 발생하는데 이를 인해 저전파의 조작시간과 초동 방향을 결정하지 못한다. 이러한 현상은 그림 19에 나타난 바와 같이 FS2D5에 포함된 maximum phase 성분에 기인한다. 그림 19는 FS2D5 필터의 zero phase, minimum phase, maximum phase 성분이 나타내는 것으로 각 성분 분해는 polynomial rooting 방법에 의해 수행되었다.(2) 이때 maximum phase의 경우에는 z plane 영역에서 unit circle 외부에 있는 해를 조합한 신호 이며 minimum phase, zero phase는 각각 unit circle 내부, unit circle 상에 존재하는 해에 대해 신호이다.(3)

non-causal ringing 현상은 제거하기 위해서는 maximum phase 성분을 동일한 폐쇄에 전속목표점을 갖는 minimum phase 성분으로 환산해야 하는데 여러 가지 방법이 있으나 본 연구에서는 Schebaum(32)이 사용한 방법을 적용해 보았다. Schebaum(32)에 의하면 maximum phase 성분을 포함한 filter에 의해 non-causal ringing의 왜곡된 신호를 갖는 기록은 다음과 같은 식에 의해 보정될 수 있다.

$$y[i] = \sum_{k=0}^{m} a[k] \cdot y[i-k] + \sum_{l=0}^{m} b[l] \cdot x[i-l] \quad (7)$$

여기서 $a[k] = \frac{f_{\text{max}}[m] - k}{f_{\text{max}}[m]}$ for k=1 to mx, $b[l] = \frac{f_{\text{max}}[l]}{f_{\text{max}}[m]}$ for l=0 to mx이다. 또한 $y[\cdot], x[\cdot]$은 각각 출력, 입력시계열의 역방향 시계열(time reversed sequence)을 의미하며 $f_{\text{max}}[\cdot]$는 non-causal 필터의 maximum phase 성분을 의미한다. 식 (7)로부터 필터의 maximum phase 성분인 $f_{\text{max}}[\cdot]$를 계산할 수 있으며 시계열 $a[\cdot], b[\cdot]$을 계산할 수 있고 입력신호의 역방향 시계열에 대해 식 (7)를 적용하고 그 결과의 역을 다시 취하면 non-causal ringing 현상이 제거된 신호를 얻을 수 있다. 그림 20은 이상에서 제시된 필터계수 $a[\cdot], b[\cdot]$에 (식 8)를 FS2D5와 실제 자료에 적용한 후 필터의 균주값인 79(0.79)이동한 적용 결과를 보여주고 있다. 그림 20(b)의 경우 non-causal ringing 현상이 제거된 결과는 79(0.79) 이동한 적용 결과를 보여주고 있다.
상에 의해 전혀 확인되지 않았던 초동의 방향과 도착시간이 식 (7)의 필터링에 의해 확인된 것이다. 그리고 속도도 동일한 경향을 갖고 있음을 알 수 있다. 그림 20에서 20Hz 속도기록을 필터링하기 위해 FS2D의 sampling rate인 100Hz로 보정하였다.

\[
\begin{align*}
\text{a(n)} &= (-1.0354805740409d+07, 5.1230320239437236d+07, \\
& -1.52059208534543d+07, 3.607956417652665d+07, \\
& -4.43250752936349d+07, 4.70209795509976d+07, \\
& -3.69808219092381d+07, 2.125885042584910d+07, \\
& -8.769186160050095d+07, 2.4582201936974634d+07, \\
& -4.2045694278666567d+07, 3.318265269359595d+07)
\end{align*}
\]

\[
\begin{align*}
\text{b(n)} &= (3.18265269359595d+07, -4.2045694278666567d+07, \\
& 2.4582201936974634d+07, -8.769186160050095d+07, \\
& 2.125885042584910d+07, -3.69808219092381d+07, \\
& 4.70209795509976d+07, -4.43250752936349d+07, \\
& 3.607956417652665d+07, -1.52059208534543d+07, \\
& 5.1230320239437236d+07, -1.0354805740409d+07)
\end{align*}
\]

(8)

3. 결 론

본 연구에서는 전력연구원에서 운영하고 있는 지진관측망의 관측시스템에 대한 주파수특성을 살펴보고 계측기록의 미지의 영향을 시뮬레이션을 통해 알아보았다. 시뮬레이션 결과와 수도계에 의해 1Hz 미만에서 주파수응답 폭락현상이 나타났으며 20Hz 수도기록 downsampling시 사용되는 FIR 필터의 100Hz FS2D의 왜곡을 나타내는 non-causal ringing이 확인되었다. 이는 수도계에 의한 왜곡을 보정하기 위해 시간영역에서 디지털 필터의 왜곡계수 계기보정(JCV100)을 실제자료에 적용하고 결과의 타당성을 검증하였다. 특히 지정된 window 기록에 대해 정확한 지하 및 측정단위 계기보정이 필요한 것으로 사료된다. 또한 본 연구에서는 지진관측자료를 효과적으로 활용할 수 있는 몇 가지 방안에 대해 살펴보았다. 먼저 관측자료의 취득시 고려해야 할 일반적인 사항에 대해 살펴보고 이 사항 중 대부분은 지진관측사의 경험 상 케이스가 중요하다고 할 것이다. 본 연구는 실시간으로도 정확하게 평가할 수 있도록 계시하였기 때문에 시간영역에서 발생한 사유인 경우에도 주파수 영역에서는 신뢰적으로 스패트럼 자료를 활용할 수 있도록 보였다. 또한, 실시간으로 따라 스패트럼의 변화를 실제 자료를 이용하여 시뮬레이션을 수행한 결과 주요 주파수 대역에서는 스패트럼의 변화가 거의 없음을 확인하고 유사한 자료가 스패트럼 분석에 활용될 수 있음을 보았다. 마지막으로 window 적용에 따라 저주파 스패트럼이 왜곡됨을 확인하고 시간영역에서의 적응을 통해 변화를 계산하고 변위 영역에서 경향을 제한한 후 스패트럼을 계산하면 활용할 수 있는 지반과 영역이 더 넓어지 않을 수 있다. 이때 시간영역에서의 적응은 고주파 스패트럼 왜곡을 유발할수록 시간영역 적응은 wavelet 선호 분 리를 통해 얻어진 지하와 선호에 대해서만 수행하였다. 20Hz 속도 자료를 이용한 도착시간 및 초동 방향 파악을 어떻게 하는 non-causal ringing 현상을 계하기 위해 FIR 필터의 maximum phase를 minimum phase로 대체하는 신호처리기법 소개하고 계측된 지진자료에 적용하여 타당성을 검증하였다. 이형의 결과는 국내 지진관측망 자료를 사용자가 하는 관련 분야 종사자들의 이해를 증진시킬 수 있으며, 앞으로 본 기법의 유용성을 확인하여 스패트럼 분석에 의한 지진자료 및 지진과학과 특정 평가 및 지진발생에 따른 옵니다스пуска트럼 예측에 활용할 예정이다.

감사의 글

본 연구는 과학기술부 2001년도 원자력연구개발 중장기 계획사업 "원전 내진설계를 위한 기반 구축 연구"과제로 수행되었음을 밝히며, 이에 감사 드립니다.

참고 문헌

7. Personal communication with Robert Bob Busby with Quanterra, Inc.

