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Modified Mass-Preserving Sample Entropy
Chul Eung Kim!’ and Sang Un Park?)

Abstract

In nonparametric entropy estimation, both mass and mean-preserving maximum
entropy distribution (Theil, 1980) and the underlying distribution of the sample entropy
(Vasicek, 1976), the most widely used entropy estimator, consist of #
mass-preserving densities based on disjoint intervals of the simple averages of two
adjacent order statistics. In this paper, we notice that those nonparametric density
functions do not actually keep the mass-preserving constraint, and propose a modified
sample entropy by considering the generalized O-statistics (Kaigh and Driscoll, 1987)
in averaging two adjacent order statistics. We consider the proposed estimator in a
goodness of fit test for normality and compare its performance with that of the
sample entropy.

1. Introduction

Suppose that a random variable X has a distribution function F(x) with a continuous

density function Ax). The differential entropy H(F) of the random variable is defined by
Shannon (1948) to be

HF)=— [ _fx)logAx)dx. M

The entropy difference between two distribution functions F and G is defined to be
4H(F, G)= H(F)— H(G),

which is nonnegative if F and G are in the same moment class and F is the maximum

entropy (ME) distribution in the class.
Suppose that we have an independently identically distributed (id.) sample,

X1, X3, X, We define X (., to be rth order statistic from a sample of size n and
suppress the notation n for a sample of size n. In a goodness of fit test for Hyf= f, based

on the sample, 4H(F(, G) has been considered in establishing a goodness of fit test statistic
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by estimating H(G) and the possible unknown parameters in F, (see, Vasicek, 1976;
Gokhale, 1983). In estimating H(G), the sample entropy (Vasicek, 1976) has been most widely
used, which can be written as

H(n,m=n"" g:l logz—:ln(X(i+m)_X(z’—m))

where X () =X () for K1 and X (=X () for D n.

Theil (1980) has given a mass and mean-preserving ME distribution as

| 4 x—*%(xuﬁx(z))

s gy O ifx<&,
X (™%X ‘i‘(x =1 )
a x(i+1>gx(i—1) 8 {x<&4y,i=2,,n—1 2)
—1 4 x—_%(x(n_l)+x(n))
’ exp( = it e,

X (=X (e 1
(n) (n—-1) _4—(x(n)_x(n—1))

where &,=(xu-ptx@)/2, i=2,-,n &=xq and €&,41=xm. In g, the
Ei+l

mass-preserving constraint, L_ g {x)dx=1/n, holds and the mean-preserving constraint,

E g,(X)=7c, holds. However, we note that g, in (—o0, £,) has been established based on

the mean-preserving constraint by neglecting the mass-preserving information in the interval

(x (1, &1). It has been recently shown in Park and Park (2001) that the sample entropy for

m=1 can be viewed as the entropy of the nonparametric density function,

g, (x)= 10 ifx<&or x> &4 (3)

- 9 . )
n féEx<L&,0,i=1,,n
XGrn X (-1 ! ol

Then we can see that g, is just a modification of g, in the end-intervals by taking the

exponential smoothing to maximize the entropy under both end-intervals where the
exponential distribution is fitted to satisfy the mean-preserving constraint. It has been shown
in Theil (1980) that the entropy of H, can be obtained as

H(n)=2(1—log2) + H (n, D).

In this paper,

we replace &,=(x—p+x)/2 in g, with &;=((n—i+Dxy+G—Dx/n to
conform better to the mass-preserving constraint and also modify the exponential smoothing
of both end-intervals by considering the fact that F(X (;;,-p) — F(X @)=1/(n(n+1)).

Thus the proposed sample entropy is mass-—preserving but not mean-preserving. We consider
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our modified sample entropy in a goodness of fit test and compare its performance with the
test statistic based on the sample entropy of m=1 for a normal distribution. Monte Carlo
simulation shows that our test statistic performs better that the competing test statistic
against almost all alternatives except the uniform distribution.

2. Modified nonparametric entropy estimation

T he nonparametric estimators of H(F) have been suggested by many authors including
Vasicek (1976), Theil (1980), Ebrahimi et al (1994) which are all based on gaps of order
statistics. It has been shown in Cressie (1978) and Antille et al (1982) that test statistics
based on gaps of order statistics perform well in a goodness of fit test and symmetric test,
respectively. The test statistics based on the Kullback-Leibler information (Kullback and
Leibler, 1951) and the entropy difference have been employing the sample entropy (Vasicek,
1976) as a nonparametric entropy estimator and show goqd performances in a goodness of fit

test (see, Arizono and Ohta (1989), Ebrahimi et al (1992), etc). The g, of the sample entropy
and g, of the mean and mass preserving maximum entropy (ME) distribution are based on
second-order gaps of order statistics, where m—order gaps of order statistics is defined to be
X (i+m) T X ()

We can see from (2) and (3) that g, is actually based on n disjoint intervals composed of
(x @y, €9, Emx () and g, is based on n disjoint intervals composed of
(—o0, &y, &,,). Their difference is that g, is based on the bounded interval while g,
is based on the unbounded interval. In each interval, (&;,&;4y), =2, ,n—1, the

mass-preserving constraint has its meaning if the mass-approximation holds as
Eivy

fé Ax)dx=1/n,i=2,--,n—1. In view of this, we think that the closer value to x (;n,—1) is
better than the simple average in averaging x () and x (;+p. Kaigh and Driscoll (1987)

suggested the O-statistics of order statistics as

= nggyd Cj—l,r—lcn—j,d—rx
rnd — (iin)
Coua ;

where E(m ;)= g and C, 4= n!/({(n—d)!d!). In view of Kaigh and Driscoll (1987), it
is clear that &;=((n—i+1)x _p+(i—1)x)/n is better fitting the mass-approximation
than just the simple average. Thus our modified intervals are
A= (%, & €% () )
or

B,=(~,&,,&,,®)
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If we consider the fact that F(X (;,-1) — F(X @n)=1/(n(n+1)), we need to adjust the
mass-preserving adjustment # for the interval (x (), &,) in (4) with n(n+1). However, the

resulting g, is no more probability density function. Ebrahimi et al (1994) also have

suggested a modified sample entropy by adjusting the order of gaps of order statistics in both
end-intervals, but their modified sample entropy is also not based on a probability density

function in a similar context. Thus our interest here is on the modification of B, and the
exponential density in the interval (—o0, & é), which satisfies
F(X (4n-1)— F(X 1:n)=1/(#n(n+1)), can be determined to be

-1 log((nt)/m) o Jog((nt1)/n)
Ea—x Ea—x

Thus the modified nonparametric density function can be written as

(x— &3)).

n

g (D)= n"! log,f(é(ﬁ_;l(?)/n) exp( log;i(én*+xl()1{n) (x— &) if x<&,
il fitasen i,
i+1 i
nl logyg((r)ti—;)/n) exp(— logjgi(tl-_f-é)_/n) (x—£.) if x&.,.

Then we can obtain the entropy of g, as

H () =2 (1= 1og (L) 4271 3 log (611, - £)).

where §i=x(1) and E;+1=X(,,).
3. Test for normality

Suppose that we are interested in a goodness of fit test for,
Hyfolxn, 0)=exp(— (x— )%/ (26%))/V 276>, where g and o are unknown. The
normal distribution is the ME distribution under the moment constrains E(X)= g and

E(X) =';12+02, and 4H(F,, G) can be written as logV 276%+0.5— H(G). Thus we can

establish a test statistic by estimating u,0 and H(G). In estimating x and 02, we use the
method of moments estimation where the moments are the ME characterizing moments by
following the lines of Soofi et al (1995) and Park and Park (2001) as FE; (X) and

Eq; (X 2)—EGW(X) 2 respectively. Thus we consider here two test statistics for normality

as follow.

1. T, (m=1 in Vasicek(1976) and Arizono and Ohta (1989)).
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T,=logV 27 0240.5— H (n, 1),
where ?72,,= E GU(XZ) —Es(X) 2
2. T
T = log\ 22 05+ 0.5— H 1),
where 0/2;,= E GW(XZ) —E; (X 2,
We made 20,000 Monte Carlo simulations and obtained the percentage points of each

statistic for the normal distribution. In Figure 1, we present the distributions of two statistic

based on the Monte Carlo samples where the sample sizes are 20, 50.

Figure 3. Normal Null Distribution : Distributions of two test statistics based on
20,000 simulations (a) n=20 (b) n=50.
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We also made 10,000 Monte Carlo simulations on the powers of the test statistics against 8
alternatives for sample sizes 20, 50. The critical values for T, and T, are determined from
the previous simulations to be 05959 and 05936 for n=20, and 0.4391 and 0.4888 for n=50,
respectively. In this power comparison, we see from Table 1 that T ,, has much better
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powers than 7T, against alternatives with unbounded supports and similar powers against
other alternatives with bounded supports except the uniform alternative. The poor performance
for the exponential distribution comes from the fact that the uniform distribution has a
bounded support.

4. Concluding remarks

We modify the sample entropy, which is most widely used nonparametric entropy estimator,
and see that its performance as a goodness of fit test statistic is better than that of Vasicek
(1976) against alternatives with unbounded supports but is not better against alternatives with
bounded supports. We may consider including the endpoints in the sample for the alternatives
with bounded supports. In modifying the sample entropy, we have considered two adjustments
concerning the mass-preserving constrains @ The first one is that we use the weighted
average, instead of the simple average, which produces closer value to x(;,—; and the
second one is that we modify the exponential fitting in Theil (1980) to satisfy the mass

approximation. Our modification here is limited to m=1, and it needs to be further

generalized for m 1.

Table 1. Power estimate of .05 tests against eight alternatives of the
normal distribution based on 10,000 simulations (%)

n=20 n=50

Alternatives T T T T
Uniform 29.26 15.41 64.25 42.45
Exponential 64.13 65.57 97.77 97.03
24(1) 97.09 96.75 100.00 100.00
24(2) 64.13 65.57 97.77 97.03
22(4) 26.13 30.66 61.91 61.49
Cauchy 68.06 81.75 97.18 98.79
t(3) 12.40 27.69 29.34 51.79
t(5) 6.46 15.22 10.82 25.99
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