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Estimating a Binomial Proportion with Bayes Estimated
Imputed Conditional Means

Min Woong Shin!) and Sang Eun Lee2

Abstract

The one of analytic imputation technique involving conditional means was
mentioned by Schafer and Schenker(2000). And their derivations are based on
asymptotic expansions of point estimator and their associated variance estimator, and
the result of imputation can be thought of as first-order approximations to the
estimators. Specially in this paper, we are presenting the method of estimating a
Binomial proportion with Bayesian approach of imputed conditional means. That is,
instead of using maximum likelihood(ML) estimator to estimate a Binomial proportion,
in general, we use the Bayesian estimators and will show the result of estimated
imputed conditional means.
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1. Introduction

Techniques of nonresponse imputation are more paid attention to statisticians recently.
Because the imputation gives the standard complete-data methods of analysis. In 1987, Little
and Rubin stated that one drawback of imputation followed by the use of complete-data
methods of analysis is that the resulting inference may be seriously misleading, because
uncertainty due to missing data has not been addressed. Following that statement, general
multiple imputation method was introduced by Rubin and the idea leads to several completed
data. And these methods were pretty much based on the "repeated-imputation” methods.
However Schafer and Schenker(2000) developed the analytic method to produce appropriate
variance estimates with just a single, nonrandom imputation of predictive means for the
missing values. And the method was based on the asymptotic expansions of point estimators
and their associated variance estimators and produces a first-order approximation to Rubin’s
repeated-imputation inference with a infinite number of imputations and mentioned the
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conditional mean imputation. In this paper we use the example of estimating a Binomial
proportion with conditional mean imputation method in 2000 paper and in stead of using ML
estimator , we applied the Bayesian estimator. In section 2, it will show the data pattern for
imputation and section 3 gives the general conditional mean imputation. Finally in section 4
we have the theorem of the results for using Bayesian estimator of estimating Binomial
proportion.

2. Description of data
2.1 Pattern of missing data

Suppose a simple random sample of size # observational units from a population size N.

Sometimes a single variable Y is missing and other variables X, X3, ..., X, are completely
observed. And let X denote the #nXp matrix of observed data for X, X,,...,X, and y

denote the #nX1 vector of Y values. Then y can be consisted of observed and missing

components, VYo and Y, , with size of #n; and #ny= n— xn;. The rate of observed data is
ri=mn/n , and the rate of missing data is 7y=1—7,. We assume that 7, is bounded

away from 1 as n— oo,

2.2 Estimating with complete data

Let @ denote a scalar quantity to be interested If the data were complete, a point
estimate be noted as 0= (X, y) , and estimate of variance for §, note as U= U(X, y). The

point estimator @ that we consider are smooth functions of linear statistics. Let

@=g(TX1, veey TX,,y Ty) ‘_“(1)

where TXi=n_1£;X,-/, i=1,...,p, Ty=n_lﬁ“y,- )
1= 1=
X denotes the values of X; for unit g y; denotes the values of Y{(observed or

missing) for unit ¢/ and g is smooth and well-behaved. , the estimated & will be the

expectations of the linear statistics,

Q=g(ETx,...,ETx,ET),),
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where @ can be thought of as a method - of -moments estimate of .

We assume that complete-data variance estimator U has the form

_-1,.08(T) \7o_08(T)
Usn" (577 ) SCH00)
where T=(Tx,,..,Tx, Ty and S=(n—1)"(Z7Z—nTT"), with Z=(X,y). That is ,

U is the classical variance estimator for @ based on the sample covariance matrix and the
J0-method.

Therefore,
U Q-9 — M0,1), as n—oo.

2.3 Modeling missing data

In general(Rubin 1976), most procedures for handling missing data in surveys and elsewhere
are based on an assumption of ignorability. The observed data, of course, provide no
information to support or contradict this assumption; such support must come from a source
external to the observed data. Therefore, every missing—data procedure must be based on

some assumption that cannot be verified from (X, v.;) alone.

Assuming that nonrespnse is ignorable and that a probability model for v, given
(X, yas) has been correctly specified. A typical specification for this model will include

unknown estimable parameters, 6.

Let @ denote an estimate of & based on (X, Yos) under the assumed model for missing
data. Also, let I' denote an estimate of V(8— ) based on (X, yu).

Therefore, if ? may be a maximum likelihood(ML) estimate, and I’ may be the inverse of

the observed information matrix evaluated at 8. We assume that I'= O(»"!) and that
26— — M0, D

where [ denotes the identity matrix.
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Let mis denote the indices of { such that y,,Emuis. Then for all 7, ¢ =mis, we assume

that

E(yilX,yobs, 6) = ﬂz( 6) ’
V(2IX, yos, 0) =05 6),

and
Cov(yln quleyobh 6) = 0

where y; and 02, are function of 4.

3. Conditional Mean Imputation

3.1 Conditional mean imputation

By Little and Rubin(1986), let x(68) denote the vector with elements u{68), i=mis ; that

is
/1( 6) = E(ymiley Yobs; 0)

Conditional mean imputation can be efficient for point estimation of € ; in fact,
Q(X, Yo, #(B) is a first order approximation to the "best” estimate of €. Inference can
be distorted with conditional mean imputation, however. With conditional means imputed for

Ymis does not hold in general because is usually biased downward.

EU(X, Y opsr (D) V(Q— X, Yops, (D)) .

3.2 Corrected analysis methods for conditional mean imputation

This is the method of drawing inference for @ from a data set which the missing values
of Y have been replaced by conditional means. This method(Schafer & Schenker 2000) can be
considered a linear approximation to a full analysis using multiple-imputed data. The results
are restricted to simple random samples form a infinite population.
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3.2.1 Bayes interpretation

A Bayesian interpretation regards @ and U as fixed(given complete data) and @ as

random. Regarding @ and U as approximate complete-data posterior mean and variance of

@, respectively,

@: E(QX, yobs, 9),
U= V(QX’yObsv ‘9)

Bayesian interpretation of D and I'is posterior moments of 8 given the observed data,

9: E(ﬂnyabs),

I'= V(aX,yobs)-

Now, with incomplete data, however, inferences should be based on the posterior moments
given only the data actually observed, E(QX,yqu) and V(QX,v,). Note that

E( QXpyobs) = E( @X, yabs)

and
V(QX’yobs) = V(anyobs) + E(Uleyobs)

To obtain approximate posterior moments of €, then, we need only to approximate the

mean and variance of @ and the mean of U over the predictive distribution of ¥ .

Here are the approximate moments of @ and U.

E(QX, Vop) = X, Yopsr t{ D)+ O,(n 1),

1€ s

VOIX, v = (28T )22 51 209 1+ (BET0 YD, (B TD,(B) + 0,(n™ )

where 7T is for the complete-data statistics T with #(@ substituted for v,
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and

where D, (0)=n"" 2( 3#:(9)

and finally,
E(UX, yos9) = UCX, Yoss, #<?))+(—‘9@>2 T2 (B + 0 (n™

Also the point estimation for & is following;

E( QX, yobs)x @(X; Yobss /1(/5)) "’—(2)

and for variance estimation is as following;

V( QX, yobs)z U(nyobs; #(@) +C1 + C2 —“—(3)

where
=2(_a§£7@_)2n_1 zgmso—%(/a) _-~—(4)
and
C,= (£ D, (0 T, —®

4. Estimating Binomial Proportion

Suppose a simple random sample of size of # of binary(0-1) wvariables from infinite

population, and let the estimated be &=p, and inferences for p are based on the point

estimate Q= y= % >ly; and the variance of estimate is U= Tnl:—l—)— 2(vi— ).

Suppose that Y is subject to missingness completely at random, so that 1y, is just a

simple random sample from y
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If the missing data, ¥, are modeled as a vector of ii.d Bernoulli (#) random variables,

then ¢, (=6 and (8= 6(1—8).

4.1 Using ML estimation based on

Maximum likelihood estimators of @ and variance of @ are as following.

=L Sy and r=30-9/n,

n) i€obs
and substitute the estimates to equation (2) - (5) then we have the below results.

QUX, Yo, 1(B) = 3=

n1 i€o syi

~ p L -
U(X;yobSv#(/B))"’ V? nl(nl_].) zezobs(yi yl)2

C~ 27’17’0_,11‘(;11___'_17 IEZO'.bS(y,-— ;1)2

and

~ AL )2
CZ"’ 7% n1(7’l1—1) 1ezobs(yz yl)

4.2 Using Bayes estimation based on y,;

Now in this study we apply the Bayes estimates for 8 and variance of 6.

Take the prior for 8 as a beta distribution then

O i 1—-6)F ! ,0<6<1



70 Min Woong Shin and Sang Eun Lee

that is if @ o« Be(a, ) , then the posterior of & becomes a beta distribution with
aty, B+n —x

h(@lyl) oc 6a+y1—1(1_ 9) Btn—x—1
where y;=n }1 is from observed data.

Now, Bayes estimator for 8 is as following.

+
93=E(9|y1)=?f“3—_{171

and

(a+y)(B+n —y1)
(a+ B+ n)«a+ B+n+1)

I'g= V(ﬂyl)*_—

Algebraic calculation yields as following.

@(X, Yobs» #(3)) =( ZEZOIbSyl + n ;B)/n

=7 y1+7 I8
where ygp= /93=E(91y1)=‘—a_f’—|‘5‘—r;1‘
¥ (5~ Q'+ 3.(0- 07
U(X,yobsy /1(5))= = n(n_ll)mw
E%g(yr @)2
~ T a(n—1)

—_ 1ezobs(yi— @)2 v nl(nl—l.)
(1) n(n—1)

o L — D)2
~7]1 nl(nl—l) tezobs(yi Q)
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=22y 8 5
=2-1-n"2n 81— 79)

l;(y, Q)

~ M _Eobs T
~2- n n nl(nl—l)

""27’17’0 n(n _1) Z(yz

1€ 0bs

cz—-<——g@>20 (BT DD
=1- ,,(2) I

where D (@)—— =7

(a+y)(B+n—y)
(a+ B+n)Xa+ B+n+1)

FB=

5. Summary
Here we state the summary as a theory :

If a simple random sample of size of # of binary(0-1) variables from infinite population, and

that Y is subject to missingness completely at random, so that . is just a simple random

sample from y. If the missing data, ¥,; are modeled as a vector of iid Bernoulli (6)

random variables, then x(f) =6 and o*(§)=6(1—6) and using Bayes estimator for @

then estimation of quantity @=;= 'L— Zyi is as following.
1

E(QX, Y= y+ 7 VB
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V(QX, Yobs)sz—anﬁll‘_‘T)‘ 2_0;5(32,-— QF+ 2nn m ;Ds(y,-— 4)

(a+ ‘3—/1)(,3+ ny— 3’1)
(a+ B+ n)Xa+B+n+1)

Finally, we have the results table using ML and Bayes Estimates.

M.L. Bayesian
AX, yosoo ()| 1= n% 2.9 " v+ 70(7%>
U(X, Yoss, 11(0)) ’%nl(—nll—_l')_ 2 (i »)? ’%Wlle_) 2, (- 9?
¢ 2 ATy B W 2nn ey 0 @
< 720”1(—"11—_17 &l w1 (aiaﬁ++:y¢3(2€;+nzl?; n_yllil)

where Q= Q(X, yous, #£(9))

From the above table, besides of changing the part of ML to Bayesian estimator,
basically, the final results of both estimators have the same structure as what Schafer
& .Schenker(2000) were insisted in their paper. Specially the variance terms are still efficient

respect to the role of 7 and 7.
Consequently, equations of U(X, v #(8), C,, C, show that the proportionate

contributions to the correct variance estimate are approximately 75, 27,27, and 7/20

respectively.
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