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Bayesian Analysis for Neural Network Models

Younshik Chung?), Jinhyouk Jung2) and Chansoo Kim3)

Abstract

Neural networks have been studied as a popular tool for classification and they
are very flexible. Also, they are used for many applications of pattern classification
and pattern recognition. This paper focuses on Bayesian approach to feed-forward
neural networks with single hidden layer of units with logistic activation. In this
model, we are interested in deciding the number of nodes of neural network model
with p input units, one hidden layer with m hidden nodes and one output unit in
Bayesian setup for fixed m. Here, we use the latent variable into the prior of the
coefficient regression, and we introduce the ‘sequential step’ which is based on the
idea of the data augmentation by Tanner and Wong(1987). The MCMC method(Gibbs
sampler and Metropolish algorithm) can be used to overcome the complicated
Bayesian computation. Finally, a proposed method is applied to a simulated data.

Keywords : Neural network, Latent variable, Sequential step, Gibbs sampler, Metro-
polish algorithm, Transfer function.

1. Introduction

Neural networks have been developed rapidly and now used in engineering applications
widely. These models are typically presented as black box models to deal with nonlinear
features in programs like regression, forecasting and classification.

Bayesian approach in the analysis of neural network models has been studied by Buntine
and Weigend(1991), MacKay(1992), Neal(1996) and Muller and Rios Insua(1998a). From a
statistical modeling point of view of neural networks are a special instance of mixture models.
Many issues about posterior multimodality and computational stratiges in neural network
modeling are of the relevance in the wider class of mixture model.

Linear regression which using more explanatory variables may give a better fit for the
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data, but may lead to overfitting and bad predictive performance. Similarly, increasing the size
of a neural network may lead to better fits on training data. But, it may result in overfitting
and poor predictions. Thus one needs a method for deciding how to choose a best model, and
needs a way of searching the model space to find this best model, as it may be impossible to
try fitting all possible models.

This paper is meant to address these issues and focuses on feed—forward neural networks
with single hidden layer of units with logistic activation function. Our aim is to find the
number of nodes of neural network model with p input units, one hidden layer with m

hidden nodes and one output unit in Bayesian setup for fixed wm.

Our methodology for this sequential step is based on the idea of the data augmentation by
Tanner and Wong(1987). In our neural network model, we consider, by introducing the latent
variable into the prior of the coefficient regression, the sequential step for the model selection
which means that the model can take the f; only after f),-:-,8 ;- are reached.

In other words, to get to the regressor, one must pass through the regressors

B1, -, B;—1.Then, the marginal posterior probabilities of the latent variables will be computed

to decide the number of nodes. In orde to overcome the computational difficulties of marginal
posterior density, we will use the Markov chain Monte Carlo (MCMC) methods such as Gibbs
sampler(Gelfand and Smith, 1990)

and Metropolis-Hastings algorithm(Metropolis et al., 1953).

The plan of this article is as follows;

In section 2, we will briefly describe neural network model’s origin, a kind of the transfer
functions, and applications. Also, we will explain the model structure and interpretations of
each variables. In section 3, we introduce how to construct the prior of latent variable w. To
solve the computational difficulties in Bayesian approach, the MCMC method is employed. For
this MCMC method, the full conditional densities are obtained. In section 4, we explain our
methodology to a simulated data which has one hidden node. Finally in section 5, we discuss
our results and propose directions for further works, and conclude this paper.

2. Neural Network Model

Neural networks were originally created as an attempt to model the act of thinking by
modeling neurons in a brain. Much of the early work in this area traces back to a paper by
McCulloch and Pitts(1943) which introduced the idea of an activation function, although the
authors used a threshold(indicator) function rather than the sigmoidal functions common today.
Threshold activations were found to have severe limitations and thus sigmoidal activations
became widely used instead(Anderson 1982).

The unit combines its inputs into a single output value. This combination is called the
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unit’s activation function. There are three typical transfer function; the sigmoid, linear, and
hyperbolic tangent functions. The specific values that the transfer function takes on are not as
the general form of the function. The linear transfer function has limited practical value. A
feed-forward neural network consisting only of units with linear transfer functions is really
just doing a linear regression. The sigmoid and hyperbolic tangents are non-linear functions
and result in non-linear behavior. The major difference between them is the range of their
output. The most common transfer function is the S-shaped sigmoidal function. Even though
it is not linear, the behavior of the sigmoid is appealing to statistician. In general, neural
networks are a collection of simple computational units interlinked by a system of connections.
Neural networks are used for many applications of pattern classification and pattern
recognition. Many ideas and activities familiar to the statistician can be expressed in neural
network notation. They include regression models from simple linear regression to projection
pursuit regression, nonparametric regression{Specht, 1991), generalized additive models. Also
many approaches are included to discriminant analysis such as logistic regression,
classification trees. Neural network model’s structure is composed of input units, hidden units
and output units. We shall only consider feed-forward neural networks with one hidden layer
of units with logistic activations and with one linear output unit. The Neural network diagram

is as follows;
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Figure 1. Neural network diagram
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Feed-forward neural networks provide a flexible easy to a generalize linear regression
functions. The model may be viewed as

yi=PB+ glﬂjwj(yj’xi)"i'ei, i=1,,n (2.2)

and

Wyix)= 1 (2.3)
1+exp(—yp— EIthxih)

where the error term has normal distribution with mean 0 and variance & , 7] is the

index on the basis functions, known as hidden nodes, and the pS,’s are the coefficients from

the hidden nodes to the predicted responses. & is logistic transformation of a linear
combination of the explanatory variables y; which are the coefficients(weights) from the
explanatory variables to the hidden nodes. The effect of the coefficients of the logistic basis

functions ( B) can be difficult to visualize because the logistic functions are nonlinear and can
combine in unexpected ways. The coefficients inside the logistic function are even less
interpretable. Now, we start by explaining the interpretations of the parameters for a model

with only one hidden node; B, represents the overall location of y, as a sort of intercept, B
is the overall scale factor for v, the y parameters control the location and scale the logistic
function. Above model defines feed-forward neural networks with logistic activation functions,

p input units, one hidden layer with m hidden nodes and one output node.
3. Bayesian Formulation

In this section, we introduce the Muller and Rios Insuas(1998b) model, who suggest a
three-stage hierarchical model. The hierarchical structure is simple, although many
parameters are multivariate. Muller and Rios Insua(1998b) consider the linear regression of a

response y on covariates x,-*,x, by using a hidden layer of m nodes with logistic

activation functions. This actually corresponds to the combination of two standard statistical
models, linear and logistic regression. Densities are denoted generally by brackets. For
example, [X,Y], [XIY]) and [X] are joint, conditional and marginal form, respectively. From

(2.2), the distribution of output y; can be expressed as

[v; 18, 7, 1~ N(By+ gﬁjw(ﬁxi), ), i=1,-,n, (3.1)

where B=(By, Brr . Bm) » =70, 70, 75) » F=1,,m, pis the number of
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input units and m is the number of hidden nodes.

One approach for selecting a prior is to choose a prior that reflects one’s beliefs. Such a
prior would typically be a proper prior that integrates to one. Another possible approach would
be to use a noninformative(flat) prior that does not favor particular values of the parameter
over other values. For a small number of explanatory variables under consideration, one could
try to find the best model using all possible subsets. That is, given the output v and input

x, we find the "best” model which contain a selected subset By,:-, B of By-,8, with

k< m. However this becomes difficult as the number of variables increases. Further more,
one would need to select an optimal network size for each subset. Thus an efficient algorithm
is necessary for searching over the model space to find models of high posterior probability.

3.1. Hierarchical Mixture Model

The key of construction of Bayesian model selection in Neural network model is that
each component of B is modeled as having come from a mixture of two normal distributions
with different variances. By introducing the latent variable w;=(Q or 1, we represent our

normal mixture by
[Bilw]~(1—w;) NO,7)+w; N0, c/’tf), j=1,-,m. (3.2)

As will be seen, the introduction of w; facilitates our analysis of the problem. Our

methodology is based on the data augmentation idea of Tanner and Wong(1987). This setup is
exactly same as George and McCulloch (1993) except the choice of prior of the latent
variables in section 3.2. Recently, Chung and Kim (1999) used the similar setup to detect the

outliers in regression model. When w;=0, B;~ N0, 7?) and when w;=1, B~ MO0, ¢z ).
Our interpretation of this formulation is as follows. First, we set 7{>0) small so that if w;
= 0 then fB; would probably be so small that it could be “safely” estimated by 0. Second, we
set ¢; large (¢;>0 always) so that if w;=1, then a non-zero estimate of /S; should
probably be included in the next model. To obtain (3.2) as the prior for [B;lw;]l, we use a

multivariate normal prior as follows;

[ Blw]~N(0,D,RD,,) (3.3)

where £=(8,, Bm) S w=(w,, ", w, , Ris the identity matrix, and

D, =diagl b7y, >, b,,T.] (3.4)
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with b;=1 if w;=0 and b;=c; if w;=1. D, determines the scaling of the prior
covariance matrix in such a way that (3.2) is satisfied. Here too, we set 7, -, 7, small and
c1. ', Cm large (¢;>1 always) so that under (3.3), those f; for which 7;=0 will tend to be
clustered around 0, whereas those §; for which w;=1 will tend to be dispersed. The choice
of ¢; should be such that if B;~N(0, ¢; 2',-2), then a non-0 estimate of §; should be
included in the final model. One would want to choose c¢; large enough to give support to
values of S, that are substantively different from 0, but not so large that unrealistic values of

B; are supported. To help guide the choice of ¢, it may be useful to observe that the

density of MO, ¢, r?) and MO, 1) intersect at &(c;)z; when & c,-)=\/2(logcj)cf(c,2-—1).
This implies that the density of N(O,c?r?) will be larger than the density of N(O,rf) iff
|81 > &(cj)r;. Note that this intersection point increases very slowly. For example, the choices
¢;710,100,1000,10000,100000 correspond to &(c)=2.1, 3.1, 3.7, 4.3, 4.8. It may also be useful
to observe that c; is the ratio of the heights of N(0,7%) and MO, ci7%) at 0. Thus ¢; can

be interpreted as the prior odds that x; should be excluded when B; is very close to 0. Then

the hierarchical structure is as follows;

[7;|ul~Nyu, D, i=1,+,m, (35)
s S
[ 1~IG( 575 ), (36)
[#]l~N,(a, A,), (3.7
and
w=(wy, ", W)~ 7(w) (3.8)

where p=(py, ", u4,) , a, is px1 column vector, and A, is pXp positive definite

matrix.
3.2. Prior of Latent Variable

QOur main reason for embedding the normal linear model (3.1) in the hierarchical mixture
model is to obtain the marginal posterior distribution Aw|y)xAy| w)a(w), which contains
the information relevant to the number of nodes. z{w) may be interpreted as the statistician’s
prior probability that the ¥( 7,<‘x,-)’s corresponding to non-zero components of w.

In our neural network model, we consider the sequential step for our model selection
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which means that the model can take the f; only after f5y,---,8;-; are reached. In other
words, to get to the regressor §;, one must pass through the regressors fBy,:,8;-;. Let
p; =P, (w;lw,, -, w,;~1). b, can be determined when w;=-- w;_;=1, but if at least
one of the values of w;y, -, w,_; is zero, p;, must be zero. Therefore, the joint prior density

a(w) of w is in (3.8) is defined as follows;
Let P(w;=1)=p; and P(w;=0)=1—p;. Since the value of By is considered only when

B, exists, set Plwy=1lw, =1)=p, and P(w, =0|w,=1) =1~ p,. Thus,
Plw, =0]w;, =0)=1 and P(wy=1lw,=0)=0. Similarly, set P(w;=1{wy,=1, w;=1)= p3
P(W3=O|WZ= 1, w; = 1)= 1_‘03 Th€l’1, P(W3=O|7/U2=O, W1=0)=1 and

Plws=1lw; =0, w; =0)= Plws= 1w, =0, w;=1)=
P(w3=l|w2=1,w1=0)=P(w3=0|w2=1, w1=0)=0

Therefore, the joint prior density z{w) of w is of the general form

Wn=1,"", w= ml Wr=0, Wp-y=
wu, -, w) = L) 72 Ve (= ) T1 g o700

=2
Kwp=0,wn-1=0,wp-2=1,,0y=1)
X (1= p o) TI po M 0memtemam e

X ore X ( (1 _pz)pl) I(w,,,=0,~--.w2=0,w1=1)>< (1 _pl) Kwu==w=0) (3.9)

where I( - ) denote the indicator function.

e =1)

3.3. Full conditional densities

Now, we will find the functional forms of marginal posterior distributions of the
parameter. Then the joint posterior density of ,8,02 LY, M, W given y is given by
ety = ) Feplmdy 3o o S 887
[8,7,0" n,uly]=Q2707)  “expl—= 7 2 (vi—By— 24 8,¥(7;29)"]

_m 1 ,
x(2m)  tIDRD, expl— 5 8 (DuRD.) ~'f]

X(Zfr)_Texp[——%(7,-—#)'0,"2(7,-—/1)]
x——L - expl =% (4=—a,) A (u—a))]
@2nlA ) °
Sy72
() s
27 1 2 ! __S
X F(_S)(oz) exp| 262]

2
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X ( w) (3.10)
where w= (wl,---,wm)' is defined in (3.9).
In order to apply Gibbs sampler, the full conditional distributions are needed as follows;

for j=1,"-,m,

[B18 ), w, 7, 1, °¥) = N(my, s5) (3.11)

where 8= (B1, B2, Bi=1,Bj+1,"""»Bm), and

bir} g} Wy (yi— By— gﬁjqf( 7;%9)
bPct 3 U (r x) + &
b2}
birt Zl Wz(y,-)xi) + o -

mp=

=

s 5::1(3’1'_.30_ g\ﬁjw(%"xi))z"ks
2

(18, 7,12, w, 3]~ IG| 75—, — (3.12)
where B= (B, By, Bm) and 7j=(710»7;],"',7jp)'-
[7jh|7(/h),5,Ozyﬂ,w,y]OCEXD[__%(th_ﬂh)z]
(3.13)
X exp[’giz_ Zl(yz'—ﬂo_ glﬁjw(yj’xi))z]
where 7 = (70, Viue1s Yibs 1" Vi) » B=0,",p.
(uilr. 8.6 1w, wyl= (3.14)
N((ma_z’—%-A,_l)_1(o;zglyjh—i-A,—lah),(ma;2+A;l)—l)
where /1(h)=(/10."'yﬂh—lvﬂh+1r"',#p)', h=0,--,p.
P*
[w=w®|y,8 cuyl= ke k=0, m (3.15)
P}
. 1 _ __Bi )
where Py = JZ[I-V? exp[ 21 %) X a(w ™),
*_ .__.l__ _ ___'812_ ($)]
P = M oo = Byl [
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w Q= (w,=0,", w,=0) L for j=1,",m,

1 if T/Ukzo ”(w(O)) and

w(f’=(w1=1,""wf=1’wf+l=0’"',wm=0)" bk={ ¢ if w=1"

a(w?) are defined in (3.9).

In sampling scheme, the conditional distributions of (3.11), (3.12), and (3.14) are
straightforward. But the conditional distribution of 7 in (3.13) does not have intractable full
conditional form, hence, we use the Metropolis algorithm (Metropolis et. al., 1953).

To implement the Metropolis algorithm, it is necessary that a suitable candidate generating

density(Chib and Greenberg, 1995) be specified. For example, if 7x(f) can be written as
a(Doc(Dh(D), where A(D is a easily sampled density and ¢(#) is uniformly bounded, then
let #(f) be the candidate generating function to draw candidates of y. For this model,
through (3.13), we set A(y ;)= N(y,,1) and

Bi
3 2.

(3.16)
T l4exp(—yp— glhhxih)

‘/’(th) =eXD[ —_2%)'"2" gl(yl'_ By—

Given 7th as the /-th iterate state, draw candidate ¥}, from N(g, ,1), and accept 7}

as (/+1)-th iterate state of 7y with acceptance probability

*
a(yfho, 7;h)= min(% , 1) otherwise, reject the candidate and keep the current value
ih

of 7. Finally, the joint conditional probability of (3.15) is obtained by Bayes theorem and
this sampling is straightforward. The scheme goes through the sampling steps in (3.11)-(3.15)

until the convergence is achieved.

4. Simulated Data

In this paper, we simulate one hidden layer which have 2 node as follows;

J’i=Bo"‘5190(7'1'751')"?52@'(7’2'?6{)4”61', i=1,,n 4.1)

1

, and
l+exp(—7p—7u%¥a—712%2)

¢ 7’1'x D=

Plrox) = l1+exp(—rp—7ra¥a—YnXa)
Set By=1.5, B1=2.0, 8,=0.5, 7rv=0.1, yu=1.0, r2=2.0, r2=0.5, ru2=3.0
72=5,0 and &,~N(0,1), respectively.

where

Our simulation data of =200 is obtained form (4.1). One choice of starting

hyperparameters is as follows ;
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62’=I,,, a,=(0,"',0)‘, A,=1, s=0.0, and S=0.0. The reason for above setup
are computational efficiency and that we have no information of prior. Thus we used
noninformative prior, and set c¢>=100, Z=0.01, and D1=10Ds=p3=p,=0.5. The Gibbs
sampler generates 20000 iterations and Metropolis algorithm for generating ¥ is repeated

30,000 times, After discarding first 18,000 iterations, we use only the variates of remaining
iterations. Convergence of the Gibbs sampler was assessed via Geweke (1992) method, using

the CODA (Best, Cowles and Vines, 1995) suitable of diagnostics in S-plus. Fixed m=4, the

number of parameters is 20, such as By, ", B4, Y10, Y 42,
Ho, 7, tg4 and o°. Most of the parameters had Geweke statistics between -1.96 and 1.96,

we can decide that convergence is plausible.

()] QY] (2) 3 (4 0]

Since m=4, the possible values of w are w " ,w ,w'~,w and w® where w
is defined in (3.15) for j=0,--,4 and isw? is generated from [w=w?|y,8, ¢, 1, y] in

(3.17). If w? s selected, this means that the model with ; nodes is selected. Table 4.1
presents the marginal posterior probability of all possible models.

Table 4.1. The Number of Nodes

Number of Node Frequency Posterior prob. of w
0 (w (0)) 0 0
1 (w (1)) 515 0.2575
2 (w®) 1087 0.5435
3 (w®) 360 0.18
4 (w®) 38 0.019

From table 4.1, posterior probabilities of one node, two nodes, three nodes, and four nodes
are 0.2575, 0.5435, 0.18 and 0.019, respectively. Therefore it is reasonable to choose the model
with two nodes.

Table 4.2. Estimate 8

Variable Posterior mean Posterior 95% interval estimate
B 1.7237267 (1 0.34390, 2.59721)
B3 0.4099409 (-0.12952, 1.33900)
B3 0.2535759 (-0.14442, 1.63406)
By 0.0199495 (-0.15307, 0.18344)
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From Table 4.2, the posterior 95% interval of B3 and B4 contains "zero”, but the
posterior 95% interval of B, does not. This result corresponds to our expectation that the
result of B3 and f; would be "safely” estimated by 0, and B; would be generated around 2.0

( See figure 2).
From figure 2, we know that [ is generated around 2.0 and £, is generated around 0.5.

Also B3 and B, is estimated around 0. (The distribution of By, 8, B3, and S, are plotted as

the real line, doted line, dashed line, and long-dashed line, respectively.)
5. Conclusion

In this thesis, Neural network models are studied in the view of Bayesian approach.
Our concern is how many nodes should be in the model by latent variable. The idea of this
model comes from the concept of Tanner and Wong(1987). Under the above circumstances, we
have big concern about latent variables w which contains the information relevant to the

number of nodes. The vector of latent variable, w (j), is interpreted as the statistician’s prior

probability which the El/(yj'xz-)’s correspond to non-zero components of w. Hence, we
introduced the ‘sequential step’ for our model selection. As computational technique, the latent
variable w was defined to simplify the joint posterior distribution. Gibbs sampler(Gelfand and
Smith, 1990) and Metropolis algorithm(Metropolis et al., 1953) are employed to avoid the
Bayesian difficult computation. Model which have two hidden nodes was simulated and
applied to the proposed model. According to the experiment, this model was found to efficient
to choose the number of nodes.
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